Errata : Éléments d'analyse réelle. Deuxième édition E. D. P. Sciences. Juin 2019

Page 4. Supprimer les deux dernières lignes, c'est faux!

Page 280. Exercice 9.2. Remplacer g' par h' dans la solution. La version correcte est : **Solution.**

- 1. La fonction h définie sur [a,b] par $h(x)=e^{g(x)}f(x)$ est continue sur [a,b], dérivable sur]a,b[avec $h'(x)=e^{g(x)}\left(g'(x)\,f(x)+f'(x)\right)$ et h(a)=h(b)=0. Le théorème de Rolle nous dit alors qu'il existe $c\in]a,b[$ tel que h'(c)=0, ce qui équivaut à $g'(c)\,f(c)+f'(c)=0$.
- 2. La fonction h définie sur [a,b] par $h(x) = \frac{f(x)}{g(x)}$ est continue sur [a,b], dérivable sur [a,b] avec $h'(x) = \frac{g(x)f'(x) f(x)g'(x)}{g(x)^2}$ et h(a) = h(b). Le théorème de Rolle nous dit alors qu'il existe

 $c \in]a, b[$ tel que h'(c) = 0, ce qui équivaut à $\frac{f'(c)}{f(c)} = \frac{g'(c)}{g(c)}$.

Chapitre 4. Ajout d'un exercice 4.25 :

Exercise 1 ¹Soient $(E, \|\cdot\|)$ un espace vectoriel normé réel ou complexe et a un réel strictement positif. À toute suite $(u_n)_{n\in\mathbb{N}}$ d'éléments de $(E, \|\cdot\|)$, on associe la suite $(v_n)_{n\in\mathbb{N}}$ de ses moyennes d'Euler définie par $v_n = \frac{1}{(1+a)^n} \sum_{k=0}^n \binom{n}{k} a^k u_k$ pour tout $n \in \mathbb{N}$.

- 1. Montrer que si la suite $(u_n)_{n\in\mathbb{N}}$ converge, la suite $(v_n)_{n\in\mathbb{N}}$ converge alors vers la la même limite.
- 2. Le résultat précédent est-il valable dans le cas où $(u_n)_{n\in\mathbb{N}}$ est une suite réelle qui converge vers $+\infty$ [resp. vers $-\infty$]?
- 3. Montrer que si la série $\sum u_n$ converge, la série $\sum v_n$ converge alors vers $\frac{a+1}{a}\sum_{n=0}^{+\infty}u_n$.
- 4. On se donne deux réels a et b strictement positif et on associe à toute suite $(u_n)_{n\in\mathbb{N}}$ d'éléments de $(E, \|\cdot\|)$ la suite $(w_n)_{n\in\mathbb{N}}$ définie par $w_n = \frac{1}{(a+b)^n} \sum_{k=0}^n \binom{n}{k} a^k b^{n-k} u_k$ pour tout $n \in \mathbb{N}$. Montrer que si la suite $(u_n)_{n\in\mathbb{N}}$ [resp. la série $\sum u_n$] converge, il en est alors de même de la suite $(w_n)_{n\in\mathbb{N}}$ [resp. la série $\sum w_n$].
- 5. Partant du développement en série entière $\ln(1+x) = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{n+1}}{n+1}$ pour $x \in]0,1]$ et en utilisant la transformation d'Euler avec $a = \frac{1}{x}$, montrer que $\ln(1+x) = \sum_{n=0}^{+\infty} \frac{x^{n+1}}{(n+1)(1+x)^{n+1}}$.

¹D'après: https://www-fourier.ujf-grenoble.fr/~demailly/agregation/pi integrales elliptiques.pdf

6. Partant du développement en série entière $\arctan(x) = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$ pour $x \in]0,1]$ et en utilisant la transformation d'Euler avec $a = \frac{1}{x^2}$, montrer que :

$$\arctan(x) = \sum_{n=0}^{+\infty} \frac{2 \cdot 4 \cdot \dots \cdot (2n)}{1 \cdot 3 \cdot \dots \cdot (2n+1)} \frac{x^{2n+1}}{(1+x^2)^{n+1}}.$$

Solution 2

1. En notant ℓ la limite dans E de la suite $(u_n)_{n\in\mathbb{N}}$, il existe pour tout réel $\varepsilon > 0$, un entier $n_0 \in \mathbb{N}$ tel que $||u_n - \ell|| < \varepsilon$ pour tout $n \ge n_0$, ce qui nous donne pour tout $n > n_0$, compte tenu de l'égalité $\sum_{k=0}^{n} \binom{n}{k} a^k = (1+a)^n$:

$$||v_n - \ell|| = \frac{1}{(1+a)^n} \left\| \sum_{k=0}^n \binom{n}{k} a^k (u_k - \ell) \right\|$$

$$\leq \frac{1}{(1+a)^n} \sum_{k=0}^{n_0} \binom{n}{k} a^k ||u_k - \ell|| + \frac{\varepsilon}{(1+a)^n} \sum_{k=n_0+1}^n \binom{n}{k} a^k$$

$$\leq \frac{1}{(1+a)^n} \sum_{k=0}^{n_0} \binom{n}{k} a^k ||u_k - \ell|| + \varepsilon$$

 $avec \binom{n}{k} = \frac{n (n-1) \cdots (n-k+1)}{k!} \leq n^k. \ En \ not ant \ M = \sup_{0 \leq k \leq n_0} \|u_k - \ell\|, \ on \ en \ d\'eduit \ que$ pour tout $n > n_1 = \max \left(n_0, \frac{2}{a}\right)$ (de sorte que na - 1 > 1), on a:

$$||v_n - \ell|| \le \frac{M}{(1+a)^n} \sum_{k=0}^{n_0} (na)^k = \frac{M}{(1+a)^n} \frac{(na)^{n_0+1} - 1}{na-1} < \varepsilon_n = \frac{M}{(1+a)^n} (na)^{n_0+1}$$

$$avec \lim_{n \to +\infty} \frac{\varepsilon_{n+1}}{\varepsilon_n} = \frac{1}{1+a} \lim_{n \to +\infty} \left(\frac{n+1}{n}\right)^{n_0+1} = \frac{1}{1+a} < 1, ce qui implique que \lim_{n \to +\infty} \varepsilon_n = 0 et \lim_{n \to +\infty} v_n = \ell.$$

2. Dans le cas où $(u_n)_{n\in\mathbb{N}}$ est une suite réelle divergente vers $-\infty$ ou $+\infty$, quitte à remplacer $(u_n)_{n\in\mathbb{N}}$ par $(-u_n)_{n\in\mathbb{N}}$, on peut supposer que $\lim_{n\to+\infty}(u_n)=+\infty$. On a alors :

$$\forall M > 1, \ \exists n_0 \in \mathbb{N} \mid \forall n \ge n_0, \ u_n > M$$

donc pour tout $n > n_0$:

$$v_{n} = \frac{1}{(1+a)^{n}} \sum_{k=0}^{n_{0}} \binom{n}{k} a^{k} u_{k} + \frac{1}{(1+a)^{n}} \sum_{k=n_{0}+1}^{n} \binom{n}{k} a^{k} u_{k}$$

$$> \frac{1}{(1+a)^{n}} \sum_{k=0}^{n_{0}} \binom{n}{k} a^{k} u_{k} + \frac{M}{(1+a)^{n}} \sum_{k=n_{0}+1}^{n} \binom{n}{k} a^{k}$$

$$> \frac{1}{(1+a)^{n}} \sum_{k=0}^{n_{0}} \binom{n}{k} a^{k} u_{k} + M \left(1 - \frac{1}{(1+a)^{n}} \sum_{k=0}^{n_{0}} \binom{n}{k} a^{k}\right)$$

$$> M + \frac{1}{(1+a)^{n}} \sum_{k=0}^{n_{0}} \binom{n}{k} a^{k} (u_{k} - 1) = M + \varepsilon_{n}$$

 $avec \ 0 < |\varepsilon_n| \le \frac{M'}{(1+a)^n} \sum_{k=0}^{n_0} (na)^k \le \frac{M'}{(1+a)^n} (na)^{n_0+1} \text{ pour tout entier naturel } n > n_1 = \max \left(n_0, \frac{2}{a}\right) \text{ en notant } M' = \sup_{0 \le k \le n_0} |u_k - 1|, \text{ ce qui implique que } \lim_{n \to +\infty} \varepsilon_n = 0 \text{ et } \lim_{n \to +\infty} v_n = +\infty.$

3. En désignant par $(S_n)_{n\in\mathbb{N}^*}$ la suite des sommes partielles de la série $\sum u_n$ définie par $S_n = \sum_{k=0}^{n-1} u_k$ pour tout $n \in \mathbb{N}^*$ et par $(\sigma_n)_{n\in\mathbb{N}^*}$ la transformée d'Euler correspondante, on a pour tout $n \in \mathbb{N}^*$:

$$\sigma_n = \frac{1}{(1+a)^n} \sum_{k=0}^n \binom{n}{k} a^k S_k = \sum_{k=0}^{n-1} w_k$$

 $où on \ a \ not\'e \ \sigma_0 = 0 \ et \ pour \ n \in \mathbb{N} :$

$$w_{n} = \sigma_{n+1} - \sigma_{n} = \frac{1}{(1+a)^{n+1}} \left(\sum_{k=0}^{n+1} \binom{n+1}{k} a^{k} S_{k} - (1+a) \sum_{k=0}^{n} \binom{n}{k} a^{k} S_{k} \right)$$

$$= \frac{1}{(1+a)^{n+1}} \left(\sum_{k=0}^{n} \binom{n+1}{k} - (1+a) \binom{n}{k} a^{k} S_{k} + a^{n+1} S_{n+1} \right)$$

$$= \frac{1}{(1+a)^{n+1}} \left(\sum_{k=1}^{n} \binom{n+1}{k} - \binom{n}{k} a^{k} S_{k} - \sum_{k=0}^{n} \binom{n}{k} a^{k+1} S_{k} + a^{n+1} S_{n+1} \right)$$

 $avec \binom{n+1}{k} - \binom{n}{k} = \binom{n}{k-1} \ pour \ k \ compris \ entre \ 1 \ et \ n, \ ce \ qui \ donne \ :$

$$w_n = \frac{1}{(1+a)^{n+1}} \left(\sum_{k=1}^n \binom{n}{k-1} a^k S_k - \sum_{k=0}^n \binom{n}{k} a^{k+1} S_k + a^{n+1} S_{n+1} \right)$$

$$= \frac{1}{(1+a)^{n+1}} \sum_{k=0}^n \binom{n}{k} a^{k+1} \left(S_{k+1} - S_k \right) = \frac{a}{1+a} \frac{1}{(1+a)^n} \sum_{k=0}^n \binom{n}{k} a^k u_k$$

$$= \frac{a}{1+a} v_n$$

Il en résulte que :

$$\sum_{n=0}^{+\infty} u_n = \lim_{n \to +\infty} S_n = \lim_{n \to +\infty} \sigma_n = \frac{a}{1+a} \lim_{n \to +\infty} \sum_{k=0}^{n-1} v_k$$

ce qui signifie que $\sum_{n=0}^{+\infty} v_n = \frac{a+1}{a} \sum_{n=0}^{+\infty} u_n$.

4. On se ramène au cas où b=1, en écrivant que pour tout $n \in \mathbb{N}$, on a :

$$w_n = \frac{1}{\left(1 + \frac{a}{b}\right)^n} \sum_{k=0}^n \binom{n}{k} \left(\frac{a}{b}\right)^k u_k$$

On déduit alors de ce qui précède que si $\lim_{n\to+\infty} u_n = \ell$, on a alors $\lim_{n\to+\infty} w_n = \ell$ et que si $\sum u_n$ converge, on a alors $\sum_{n=0}^{+\infty} w_n = \frac{a+b}{a} \sum_{n=0}^{+\infty} u_n$.

5. Pour tout $x \in [0,1]$, on $a \ln(1+x) = \sum_{n=0}^{+\infty} u_n(x)$, où $u_n(x) = (-1)^n \frac{x^{n+1}}{n+1}$ et prenant $a = \frac{1}{x}$, on en déduit par transformation d'Euler que :

$$\sum_{n=0}^{+\infty} v_n(x) = \frac{a+1}{a} \sum_{n=0}^{+\infty} u_n(x) = (1+x) \ln(1+x)$$

où :

$$v_n(x) = \frac{1}{(1+a)^n} \sum_{k=0}^n \binom{n}{k} a^k u_k(x) = \frac{x^n}{(1+x)^n} \sum_{k=0}^n \binom{n}{k} \frac{1}{x^k} (-1)^k \frac{x^{k+1}}{k+1}$$

$$= \frac{x^{n+1}}{(1+x)^n} \sum_{k=0}^n \binom{n}{k} \frac{(-1)^k}{k+1} = \frac{x^{n+1}}{(1+x)^n} \sum_{k=0}^n \binom{n}{k} (-1)^k \int_0^1 t^k dt$$

$$= \frac{x^{n+1}}{(1+x)^n} \int_0^1 \left(\sum_{k=0}^n \binom{n}{k} (-t)^k \right) dt = \frac{x^{n+1}}{(1+x)^n} \int_0^1 (1-t)^n dt$$

$$= \frac{x^{n+1}}{(n+1)(1+x)^n}$$

ce qui nous donne :

$$\ln(1+x) = \sum_{n=0}^{+\infty} \frac{x^{n+1}}{(n+1)(1+x)^{n+1}}$$

Pour x = 1, cela donne $\ln(2) = \sum_{n=0}^{+\infty} \frac{1}{(n+1) 2^{n+1}}$ avec une convergence plus rapide que celle de la série $\ln(2) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n+1}$.

6. Pour tout $x \in [0,1]$, on a $\arctan(x) = \sum_{n=0}^{+\infty} u_n(x)$, où $u_n(x) = (-1)^n \frac{x^{2n+1}}{2n+1}$ et prenant $a = \frac{1}{x^2}$, on en déduit par transformation d'Euler que :

$$\sum_{n=0}^{+\infty} v_n(x) = \frac{a+1}{a} \sum_{n=0}^{+\infty} u_n(x) = \left(1 + x^2\right) \arctan(x)$$

où:

$$v_n(x) = \frac{1}{(1+a)^n} \sum_{k=0}^n \binom{n}{k} a^k u_k(x) = \frac{x^{2n}}{(1+x^2)^n} \sum_{k=0}^n \binom{n}{k} \frac{1}{x^{2k}} (-1)^k \frac{x^{2k+1}}{2k+1}$$

$$= \frac{x^{2n+1}}{(1+x^2)^n} \sum_{k=0}^n \binom{n}{k} \frac{(-1)^k}{2k+1} = \frac{x^{2n+1}}{(1+x^2)^n} \int_0^1 \left(\sum_{k=0}^n \binom{n}{k} (-t^2)^k\right) dt$$

$$= \frac{x^{2n+1}}{(1+x^2)^n} \int_0^1 (1-t^2)^n dt = \frac{x^{2n+1}}{(1+x^2)^n} \int_0^{\frac{\pi}{2}} \cos^{2n+1}(t) dt$$

$$= \frac{x^{2n+1}}{(1+x^2)^n} \frac{2^{2n}(n!)^2}{(2n+1)!} = \frac{x^{2n+1}}{(1+x^2)^n} \frac{2 \cdot 4 \cdot \dots \cdot (2n)}{1 \cdot 3 \cdot \dots \cdot (2n+1)}$$

(intégrales de Wallis), ce qui nous donne :

$$\arctan(x) = \sum_{n=0}^{+\infty} \frac{2 \cdot 4 \cdot \dots \cdot (2n)}{1 \cdot 3 \cdot \dots \cdot (2n+1)} \frac{x^{2n+1}}{(1+x^2)^{n+1}}$$

Pour
$$x = 1$$
, cela donne $\pi = 2\sum_{n=0}^{+\infty} \frac{n!}{1 \cdot 3 \cdot \cdots \cdot (2n+1)}$.

Chapitre 7. Solution de l'exercice 7.9. f est à remplacer par f' trois fois en début de démonstration.

Chapitre 10. Fin de page 294, remplacer les $r^2 - st$ par $s^2 - rt$ (3 fois).

Chapitre 12. Fin de démonstration du lemme 12.8. remplacer c_x par d_x (il existe déjà un c_x en début de démonstration).

Chapitre 13. Point 2. du théorème 13.10 "si et seulement" est à remplacer par "si, et seulement si,".

Chapitre 15. Nouvelle version avec une présentation algébrique des polynômes orthogonaux. Bibliographie. Ajout de :

T. S. Chihara. An introduction to orthogonal polynomials. Gordon and Breach. (1978).