Intégration et théorie de la mesure Examen

21 mai 2013

Documents, calculatrices et téléphones interdits.

On demande d'énoncer clairement chaque théorème utilisé et de vérifier les hypothèses.

Exercice 1 : Soit X un ensemble, \mathcal{A} une σ -algèbre sur X et $\mu : \mathcal{A} \to [0, +\infty]$ une mesure. Soit μ^* la mesure extérieure canonique associée à μ , et \mathcal{A}^* la famille des ensembles μ^* -mesurables.

- (1) Rappeler la définition μ^* et \mathcal{A}^* . Qu'affirme le théorème de Carathéodory?
- (2) Pour tous $E, F \subset X$ on pose $\mu_E^*(F) = \mu^*(E \cap F)$. Montrer que μ_E^* est une mesure extérieure.
- (3) Montrer que pour tout $E \subset X$, les éléments de \mathcal{A}^* sont μ_E^* -mesurables.
- (4) Soit $E \subset X$ fixé. Montrer la famille \mathcal{F} des ensembles du type $(A \cap E) \cup (A' \setminus E)$, avec $(A, A') \in \mathcal{A}^2$, est une σ -algèbre contenant \mathcal{A} .
- (4) On définit $m: \mathcal{F} \to [0, +\infty]$ en posant $m((A \cap E) \cup (A' \setminus E)) = \mu^*(A \cap E) + \mu^*(A' \setminus E)$. Montrer que m est bien définie, et que c'est une mesure sur \mathcal{F} prolongeant μ .

Exercice 2 : Soit (X, \mathcal{A}, μ) un espace mesuré, et $f: X \to [0, +\infty]$ une fonction mesurable telle que $\int_X f d\mu < +\infty$. Pour tout t > 0 on pose

$$X_t = \{x \in X \text{ t.q. } f(x) > t\} \text{ et } \varphi(t) = \mu(X_t).$$

- (1) Montrer que pour tout t > 0, $\mu(X_t) < +\infty$ et que φ est décroissante.
- (2) On munit $X_t \times \mathbb{R}_+$ de sa tribu et de la mesure produit de μ par la mesure de Lebesgue sur \mathbb{R}_+ . Montrer que pour tout t > 0, l'ensemble $E_t = \{(x, s) \in X_t \times \mathbb{R}_+ \text{ t.q. } f(x) > s\}$ est mesurable.

(3) Calculer de deux façons différentes la mesure produit de E_t . En déduire que

$$\int_{X_{t}} f d\mu = \int_{0}^{+\infty} \varphi(\max(s, t)) ds = t\varphi(t) + \int_{t}^{+\infty} \varphi(s) ds.$$

(4) En justifiant le passage à la limite $t \to 0$, montrer que $\int_X f d\mu = \int_0^{+\infty} \varphi(s) ds$.

Exercice 3: Soit \mathcal{P} un plan de \mathbb{R}^3 , S un point n'appartenant pas au plan, et $E \subset \mathcal{P}$ mesurable. Démontrer que le volume du cône de base E et de sommet S est $\frac{h \cdot m(E)}{3}$, où m(E) est la mesure de Lebesgue de E et h la distance de S au plan \mathcal{P} . On utilisera une paramétrisation du cône.

PROBLÈME

Première partie. On fixe $(a,b) \in \mathbb{R}^2$ tels que a < b, et $\varphi : [a,b] \to \mathbb{R}$ de classe C^1 . Soit $\alpha > 0$ tel que $\varphi'(t) \ge \alpha$ pour tout $t \in [a,b]$.

- (1) Énoncer le second théorème de la moyenne.
- (2) Effectuer, en le justifiant, le changement de variables $u = \varphi(t)$ dans l'intégrale $\int_a^b e^{i\varphi(t)} dt$.
- (3) Montrer que si φ' est monotone, $\left| \int_a^b e^{i\varphi(t)} dt \right| \leq \frac{2}{\alpha}$.

Seconde partie. On fixe $(a,b) \in \mathbb{R}^2$ tels que a < b, et $\varphi : [a,b] \to \mathbb{R}$ de classe C^2 . Soit $\alpha > 0$ tel que $\varphi''(t) \ge \alpha$ pour tout $t \in [a,b]$. On désigne par m la mesure de Lebesgue sur \mathbb{R} . On fixe $\varepsilon > 0$, et on pose

$$I_1 = \{t \in [a, b] \text{ t.q. } \varphi'(t) \ge \varepsilon\}, \ I_2 = \{t \in [a, b] \text{ t.q. } \varphi'(t) \le -\varepsilon\}, \ I_3 = \{t \in [a, b] \text{ t.q. } |\varphi'(t)| \le \varepsilon\}.$$

- (1) Montrer que I_1, I_2 et I_3 sont des intervalles compacts.
- (2) Montrer que $\left| \int_{I_1} e^{i\varphi(t)} dt \right| \leq \frac{2}{\varepsilon} \text{ et } \left| \int_{I_2} e^{i\varphi(t)} dt \right| \leq \frac{2}{\varepsilon}.$
- (3) Montrer que $\int_{I_3} \varphi''(t) dt \leq 2\varepsilon$. En déduire que $m(I_3) \leq \frac{2\varepsilon}{\alpha}$.
- (4) Montrer que $\left| \int_a^b e^{i\varphi(t)} dt \right| \le \frac{4}{\varepsilon} + \frac{2\varepsilon}{\alpha}$ pour tout $\varepsilon > 0$ puis que $\left| \int_a^b e^{i\varphi(t)} dt \right| \le \frac{4\sqrt{2}}{\sqrt{\alpha}}$.

Troisième partie. On fixe $(a,b) \in \mathbb{R}^2$ tels que a < b, un entier $k \ge 2$, $\alpha > 0$ et $\varphi : [a,b] \to \mathbb{R}$ de classe C^k tels que $\varphi^{(k)}(t) \ge \alpha$ pour tout $t \in [a,b]$. Montrer par récurrence qu'il existe une constante $C_k > 0$, dépendant de k, mais pas de a,b,α ou φ , telle que

$$\left| \int_{a}^{b} e^{i\varphi(t)} dt \right| \le \frac{C_k}{\alpha^{\frac{1}{k}}}.$$