Séance n° 2

Thème : Groupes (II)

Table des matières

1	Note	es de cours	1
	1.1	Conjugaison	1
	1.2	Sous-groupes distingués, groupe quotient	2
	1.3	Groupe symétrique	3
	1.4	Action d'un groupe sur un ensemble	5

1 Notes de cours

1.1 Conjugaison

Soient X et X' sont deux ensembles et $\phi: X \to X'$ une bijection. À toute application $f: X \to X$, on peut associer une application $g: X' \to X'$ qui est en quelque sorte égale à f « transformée » par ϕ , selon le diagramme :

$$X \xrightarrow{f} X$$

$$\phi \downarrow \qquad \phi \downarrow$$

$$X' \xrightarrow{g = \phi f \phi^{-1}} X'$$

L'application $g=\phi f\phi^{-1}$ s'appelle la conjuguée de f par ϕ . Si X et X' sont munis d'une structure algébrique (telle que groupe, espace vectoriel, ...), si ϕ est un isomorphisme pour cette structure et si f est un morphisme, alors g sera aussi un morphisme qui possédera exactement les mêmes propriétés "géométriques" que f (en qualifiant de géométrique une propriété qui s'exprime à l'aide de la structure de X).

Si par exemple X et X' sont deux plans euclidiens orientés, $f \in L(X)$ et ϕ isométrie bijective directe de X dans X' (=isomorphisme d'espace vectoriel euclidien orienté) alors

f symétrie orthogonale par rapport à $F \implies g$ symétrie orthogonale par rapport à $\phi(F)$

f rotation d'angle $\theta \implies g$ rotation d'angle θ

Si ϕ est indirecte au lieu de directe, f rotation d'angle $\theta \implies g$ rotation d'angle $-\theta$.

Si on note $\operatorname{Iso}(X)$ le groupe des isomorphismes de X (pour la structure envisagée), et si ϕ est un isomorphisme de X dans X', alors la conjugaison par ϕ

$$\begin{array}{ccc}
\operatorname{Iso}(X) & \to & \operatorname{Iso}(X') \\
f & \mapsto & \phi \circ f \circ \phi^{-1}
\end{array}$$

est un isomorphisme de groupe. En particulier si X=X', c'est un automorphisme de $\operatorname{Iso}(X)$

Il est remarquable qu'on puisse ensuite « abstraire » cette dernière situation à un groupe quelconque au lieu d'un groupe d'application Iso(X). Soit en effet un groupe quelconque G, et $a \in G$. L'application

$$\begin{array}{cccc} t_a : & G & \to & G \\ & g & \mapsto & aga^{-1} \end{array}$$

est un automorphisme de G, appelé automorphisme intérieur de G. Deux éléments (ou deux sous-groupes de G) images l'un de l'autre par un automorphisme intérieur sont dit conjugués.

1.2 Sous-groupes distingués, groupe quotient

Soit $f: G \to G'$ un morphisme de groupe. Le noyau $H = \mathrm{Ker}(f)$ de f est un sous-groupe de G, on le sait, mais ne peut pas être n'importe quel sous-groupe. On a en effet la propriété :

$$x^{-1}y \in H \iff f(x^{-1}y) = e \iff f(x) = f(y) \iff f(yx^{-1}) = e \iff yx^{-1} \in H$$

C'est-à-dire que les congruences à gauche et à droite modulo H sont les mêmes relations d'équivalence. Ce qui s'écrit aussi :

$$(*) \quad \forall x \in G, \ xH = Hx$$

Un sous-groupe H de G qui possède cette propriété est dit distingué dans G (ou normal, ou encore invariant¹), ce que l'on note

$$H \triangleleft G$$

On vérifie aisément que (*) équivaut à

$$\forall x \in G, xH \subset Hx$$

ou bien

$$\forall x \in G, \ xHx^{-1} \subset H$$
 ou encore $\forall x \in G, \ xHx^{-1} = H$

Le noyau d'un morphisme est, comme on vient de le voir, un sous-groupe distingué. Ce qui suit montrera que, réciproquement, tout sous-groupe distingué est le noyau d'un certain morphisme.

Soient maintenant G un groupe et $\mathcal R$ une relation d'équivalence sur G. On dit que $\mathcal R$ est compatible avec la loi de G si $[xy]_{\mathcal R}$ ne dépend pas du choix de x et de y dans leur classe d'équivalence respectives. En d'autres termes :

$$\forall x, x', y, y' \in G, \ x\mathcal{R}x' \text{ et } y\mathcal{R}y' \implies xy\mathcal{R}x'y'$$

Lorsque c'est le cas (et seulement lorsque c'est le cas), on peut munir G/\mathcal{R} d'une loi de composition interne en posant

$$[x]_{\mathcal{R}}[y]_{\mathcal{R}} = [xy]_{\mathcal{R}}$$

Il est alors immédiat qu'il s'agit d'une loi de groupe et que $x\mapsto [x]_{\mathcal{R}}$ est un morphisme de groupe. Notons H son noyau. C'est un sous-groupe distingué de G et l'on a

$$x\mathcal{R}y \iff [x]_{\mathcal{R}} = [y]_{\mathcal{R}} \iff [xy^{-1}]_{\mathcal{R}} \iff x^{-1}y \in H$$

On voit ainsi que \mathcal{R} est la congruence modulo le sous-groupe distingué H.

¹Parce qu'il est invariant par les automorphismes intérieurs de G. Un automorphisme intérieur de G induit donc sur H distingué un automorphisme qu'on pourrait être tenté de qualifier « d'extérieur »!

Réciproquement, si H est un sous-groupe distingué, la congruence modulo H (à gauche ou à droite : ce sont les mêmes relations) est compatible avec la loi de G. L'ensemble G/\mathcal{R} est ainsi muni d'une structure de groupe. Ce groupe est noté G/H. L'application

est un morphisme de G dans G/H dont le noyau est H.

Soient maintenant G, G' des groupes, $f: G \to G'$ un morphisme et $H \lhd G$. Comme dans le cas des groupes abéliens, l'application f est compatible avec la congruence modulo H si et seulement si $H \subset \operatorname{Ker}(f)$. Dans ce cas, f induit un morphisme $g: G/H \to G'$ (qui vérifie donc $g([x]_H) = f(x)$).

$$G \xrightarrow{f} G'$$

$$\pi_H \downarrow \qquad \qquad f$$

$$G/H \qquad \qquad f = \overline{f} \circ \pi_H$$

1.3 Groupe symétrique

Soit X un ensemble. On appelle groupe symétrique de X le groupe S(X) des permutations de X (= bijections de X dans lui-même). Pour un élément σ de S(X), il faut savoir faire la différence entre une propriété « purement algébrique » et une propriété « géométrique » de σ . Les premières s'expriment uniquement à l'aide de la loi du groupe, tandis que les formulations des secondes utilise les propriétés de σ en tant qu'application. Par exemple le fait que σ vérifie $\sigma^2 = \mathrm{Id}_X$ est une propriété algébrique. Que σ soit une transposition est une propriété géométrique.

Ainsi qu'on l'a vu, si X et X' sont deux ensembles et $\phi: X \to X'$ est une bijection, alors la conjugaison par ϕ :

est un isomorphisme de groupe. En particulier, si $X = \{x_1, x_2, \dots, x_n\}$ est fini, S(X) est isomorphe à $S_n = S(\llbracket 1, n \rrbracket)$ (mieux : S_n opère sur $\llbracket 1, n \rrbracket$ exactement comme S(X) opère sur X).

Un élément σ de S_n peut être indiqué par un tableau qui indique explicitement pour chaque $k \in [\![1,n]\!]$ son image :

$$\sigma = \begin{pmatrix} 1 & 2 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{pmatrix}$$

Si $\sigma \in S(X)$, on appelle support de σ l'ensemble des points de X qui sont affectés par σ : $\mathrm{Supp}(\sigma) = \{x \in X; \ \sigma(x) \neq x\}$. Un instant de réflexion convainc que deux permutations à supports disjoints commutent.

Si a_1, a_2, \ldots, a_p sont des éléments distincts de X, on note $c = (a_1, a_2, \ldots, a_p)$ la permutation $c \in S(X)$ qui envoie a_k sur a_{k+1} pour $k \in [1, p-1]$, a_p sur a_1 et fixe tout autre élément de X. Cette permutation

est qualifiée de cycle de longueur p. L'ensemble $\{a_1, a_2, \dots, a_p\}$ est le support du cycle. Un cycle de longueur 2 est appelé transposition.

Si $a_1, a_2, \ldots, a_p, a_{p+1}, \ldots, a_q$ sont des éléments deux à deux distincts de X, on a la formule suivante utile, qui signifie que le produit de deux cycles dont les supports se rencontrent en un point unique est un cycle :

$$(a_1, a_2, \dots, a_p)(a_p, a_{p+1}, \dots, a_q) = (a_1, a_2, \dots, a_q)$$

Une autre formule d'usage fréquent est la suivante. Soient un cycle $c=(a_1,a_2,\ldots,a_p)$ et $\sigma\in S(X)$:

$$X \xrightarrow{c} X$$

$$\sigma \downarrow \qquad \sigma \downarrow$$

$$X \xrightarrow{\sigma c \sigma^{-1}} X$$

Alors le conjugué $c' = \sigma c \sigma^{-1}$ de c par σ est un cycle similaire à c, mais qui opère sur les images des a_i par σ :

$$\sigma(a_1, a_2, \dots, a_p)\sigma^{-1} = (\sigma(a_1), \sigma(a_2), \dots, \sigma(a_p))$$

(cette formule est une évidence dès lors qu'on a compris ce qu'est une conjugaison)

Soit X un ensemble fini et $\sigma \in S(X)$. La relation sur $x\mathcal{R}y \iff \exists n \in \mathbb{Z}; \ y = \sigma^n(x)$ est une relation d'équivalence. Les classes d'équivalence sont appelées orbites de σ . Les classes d'équivalence réduite à un point sont constituées d'un point fixe. Soient C_1, C_2, \ldots, C_q les classes d'équivalences non réduites à un point. Chaque classe C_k est stable par σ qui induit une permutation de C_k , laquelle, on le voit aisément, est un cycle dont le support est C_k . Si on note $c_k \in S(X)$ le cycle qui coïncident avec σ sur C_k et laisse fixe tout autre élément de X, on a

$$\sigma = c_1 c_2 \dots c_q$$

Ainsi toute permutation se décompose en produit de cycles à supports disjoints. On vérifie que cette décomposition est unique à l'ordre des facteurs près.

Soient $\eta \in S(X)$, $\sigma \in S(X)$. Si on décompose η en produit de cycles disjoints : $\eta = c_1 c_2 \dots c_q$, alors la décomposition en produit de cycles disjoints est

$$\sigma \eta \sigma^{-1} = (\sigma c_1 \sigma^{-1})(\sigma c_2 \sigma^{-1}) \dots (\sigma c_q \sigma^{-1})$$

On voit ainsi que deux éléments conjugués ont, pour tout entier ℓ , le même nombre de cycles de longueur ℓ et on vérifie aisément que cette condition est aussi suffisante.

Soit X un ensemble fini. Les transpositions forment une famille génératrice de S(X). En effet, si σ est une permutation distincte de l'identité et si l'on choisit $x \in X$ tel que $\sigma(x) \neq x$, alors $(x, \sigma(x)) \circ \sigma$ possède au moins un point fixe de plus que σ . Une récurrence descendante sur le nombre de points fixes atteste alors de l'existence de transpositions τ_1, \ldots, τ_q telles que $\tau_q \tau_{q-1} \ldots \tau_1 \sigma = \operatorname{Id}$, d'où $\sigma = \tau_1 \tau_2 \ldots \tau_q$.

Étant donné $\sigma \in S_n$, on dit qu'une paire $P = \{i, j\} \subset [1, n]$ $(i \neq j)$ est une inversion pour σ si $(\sigma(j) - \sigma(i))(j - i) < 0$. On désigne par signature de σ la valeur $\varepsilon(\sigma) = +1$ ou -1 selon que le nombre

d'inversions de σ est pair ou impair. Si on pose, pour une paire donnée, $s_{\sigma}(P)=1$ ou -1 selon que P est ou non une inversion, on a $\varepsilon(\sigma)=\prod_{P}s_{\sigma}(P)$, d'où (en notant $\sigma(\{i,j\})=\{\sigma(i),\sigma(j)\}$)

$$\varepsilon(\sigma'\circ\sigma)=\prod_P s_{\sigma'\circ\sigma}(P)=\prod_P s_{\sigma'}(\sigma(P))s_\sigma(P)=\prod_P s_{\sigma'}(\sigma(P))\prod_P s_\sigma(P)=\varepsilon(\sigma)\varepsilon(\sigma')$$

Ainsi, ε est un morphisme de S_n dans $\{-1,1\}$. Son noyau, $A_n = \mathrm{Ker}(\varepsilon)$ est appelé le groupe alterné de degré n. Une permutation de signature 1 est dite paire. Une permutation de signature -1 est dite impaire.

On note que si c est un cycle de longueur ℓ , alors $\varepsilon(\ell)=(-1)^{\ell+1}$ (donc c et ℓ sont de « parités opposées »!). On en déduit :

Si σ est le produit de q transpositions, alors $\varepsilon(\sigma)=(-1)^q$ Si σ possède s orbites, alors $\varepsilon(\sigma)=(-1)^{n-s}$.

1.4 Action d'un groupe sur un ensemble

Soit G un groupe. Si on veut avoir une image « géométrique » de G, on peut tenter de « réaliser » G comme sous-groupe du groupe des permutation d'un ensemble X, c'est-à-dire de trouver un morphisme injectif de G dans S(X). Une représentation moins « fidèle » est fournie par un morphisme quelconque de G dans S(X). D'où les définitions :

Soit G un groupe et X un ensemble. Une opération (ou action) de G sur X est la donnée d'un morphisme $\rho: G \to S(X)$. On convient de noter, pour $g \in G$ et $x \in X: g.x = \rho(g)(x)$. On note que :

$$\forall g, g' \in G, \ \forall x \in X, \ g.(g'.x) = (gg').x \qquad \forall x \in X, \ e_G.x = x$$

Réciproquement, toute application . : $G \times X \to X$ vérifiant ces deux points définit une opération de G sur X (en posant $\rho(g)(x) = g.x$; attention, le premier point ne suffit pas). L'action est dite fidèle si ρ est injective.

Voici quelques exemples classiques d'actions de groupe :

- S(X) opère fidèlement sur X (en posant $\sigma x = \sigma(x)$).
- Si E est un K-espace vectoriel, $\mathrm{GL}(E)$ opère fidèlement sur E ($\rho: GL(E) \to S(E)$ est l'injection canonique et g.x = g(x)).
- \bullet Plus généralement, si X est un ensemble muni d'une structure donnée, $\mathrm{Iso}(X)$ opère fidèlement sur X
- Si G est un groupe, E un \mathbb{C} -espace vectoriel, et $\rho:G\to GL(E)$ un morphisme, G opère "linéairement" sur E. On dit que ρ est une représentation linéaire de G (la théorie des représentations linéaires est passionnante!).
- Si X est une partie d'un espace affine euclidien $\mathcal E$, l'ensemble G des isométries de $\mathcal E$ qui laissent X globalement invariant est un sous-groupe de G de $Is(\mathcal E)$ qui opère naturellement sur X (par g.x=g(x)). L'opération est fidèle si et seulement si X "engendre" $\mathcal E$, c'est-à-dire n'est contenu dans aucun sous-espace affine strict. On définit ainsi le groupe du cube, le groupe du tétraèdre, etc.
- Si G est un groupe, alors G opère sur lui-même par translation à gauche, c'est-à-dire en posant : $\forall g \in G, \forall x \in X, \ g.x = gx$
- Une autre action usuelle de G sur lui-même est l'action par conjugaison : $g.x = gxg^{-1}$.
- G opère par translation à gauche sur l'ensemble des classes à gauche modulo H (où H est un sousgroupe) : g.(xH) = gxH.
- G opère par conjugaison sur l'ensemble de ses sous-groupes : $x.H = xHx^{-1}$. Ces quatre actions sont fort utiles pour obtenir des résultats théoriques sur les groupes finis.

Soit G un groupe opérant sur un ensemble X. On définit :

- L'orbite de $x \in X$, qu'on notera : $\omega_x = \{g.x, g \in G\}$
- Le stabilisateur de $x \in X$, qu'on notera : $G_x = \{g \in G; g.x = x\}$.
- L'ensemble des points fixes de $g \in G$, qu'on notera $X^g = \{x \in X; g.x = x\}$

Il faut avoir à l'esprit que deux points x et $y \in X$ d'une même orbite ont des rôles similaires relativement à G. Par exemple, si y = h.x alors $g \in G_y \iff g.y = y \iff gh.x = h.x \iff h^{-1}gh \in G_x \iff g \in hG_xh^{-1}$, d'où

$$G_y = hG_x h^{-1}$$

Quelques relations fructueuses relient les cardinaux de ces parties :

ullet En premier lieu, il est naturel de penser que plus nombreux sont les éléments de G qui fixent x, moins l'orbite de x est vaste. Plus précisément :

$$\forall x \in X, \ [G:G_x] = |\omega_x| \qquad (\text{si } |G| \text{ est fini, } \frac{|G|}{|G_x|} = |\omega_x|)$$

En effet, l'application surjective $x \mapsto g.x$ de G dans ω_x définit une relation d'équivalence sur G (avoir même image) qui n'est autre que la congruence à gauche modulo G_x ($g.x = h.x \iff g^{-1}h.x = x \iff g^{-1}h \in G_x$).

ullet Les orbites constituent une partition de X. Si X est fini, on a, en notant Ω l'ensemble des orbites, la relation évidente

$$|X| = \sum_{\omega \in \Omega} |\omega|$$

Lorsque |G| est fini, on peut l'écrire, C désignant une partie de X contenant un et un seul élément de chaque orbite :

$$|X| = \sum_{a \in C} \frac{|G|}{|G_a|}$$

C'est ce qu'on appelle « l'équation aux classes ».

Il est fréquent qu'on l'utilise en isolant les orbites réduites à un point. En notant $X^G = \{x \in X; \forall g \in G, g.x = x\}$ et C' une partie contenant un et un seul représentant de chaque orbite non réduite à un point (par exemple $C' = C \setminus X^G$) :

$$|X| = |X^G| + \sum_{a \in C'} \frac{|G|}{|G_a|}$$

En particulier, lorsque G est un p-groupe (groupe d'ordre p^n , p premier), il vient

$$|X| \equiv |X^G| \quad [p]$$

ullet Si G et X sont finis, on peut envisager le nombre moyen de points fixes des éléments de G et constater que

Le nombre d'orbites est égal au nombre moyen de points fixes des éléments de G.

C'est la formule de Burnside. On l'obtient facilement en dénombrant « horizontalement » et « verticalement » les éléments de $\{(g,x)\in G\times X;\ g.x=x\}$. C'est en effet d'une part $\sum_{g\in G}|X^g|$ et, d'autre part,

$$\sum_{x \in X} |G_x| = \sum_{x \in X} \frac{|G|}{|\omega_x|} = \sum_{\omega \in \Omega} |\omega| \times \frac{|G|}{|\omega|} = |G||\Omega|$$

D'où

$$|\Omega| = \frac{1}{|G|} \sum_{g \in G} |X^g|$$