Université Joseph Fourier

Année 2015-2016

UFR IM²AG

Agrégation interne

Variables aléatoires discrètes

Exercice 1. Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables alétoires discrètes à valeurs dans (E,\mathcal{E}) et N une variable aléatoire à valeurs dans \mathbb{N} naturelles définies sur espace probabilisable (Ω, \mathcal{A}) . On définit une fonction Y par

$$\forall \omega \in \Omega, Y(\omega) = X_{N(\omega)}(\omega)$$

Montrer que Y est une variable aléatoire discrète.

Exercice 2. Soient X_1 et X_2 deux variables aléatoires à valeurs réelles. On suppose que X_i suit une loi de Poisson de paramètre λ_i et que ces deux variables sont indépendantes. Déterminer la loi de $X_1 + X_2$. On pourra remarquer que $(X_1 + X_2 = k)$ est réunion disjointe des $(X_1 = p) \cap (X_2 = k - p)$ pour $p \in \{0, \dots, k\}$.

Exercice 3.

- (1) Soit X une variable aléatoire à valeurs dans $\mathbb N$.
 - (a) Montrer que, pour tout $n \in \mathbb{N}^*$, on a :

$$\sum_{k=0}^{n} k \mathbf{P}(X=k) = \sum_{k=0}^{n-1} \mathbf{P}(X>k) - n \mathbf{P}(X>n).$$

- (b) On suppose que $\sum_{k=0}^{+\infty} \mathbf{P}(X > k)$ converge. Démontrer que X admet une espérance.
- (c) Réciproquement, on suppose que X admet une espérance. Démontrer alors que la suite

$$(n \mathbf{P}(X > n))_n$$

tend vers 0, puis que la série $\sum_{k=0}^{+\infty} \mathbf{P}(X>k)$ converge, et enfin que

$$\mathbf{E}(X) = \sum_{k=0}^{+\infty} \mathbf{P}(X > k).$$

- (2) Application : on dispose d'une urne contenant N boules indiscernables au toucher numérotées de 1 à N. On effectue, à partir de cette urne, n tirages successifs d'une boule, avec remise, et on note X le plus grand nombre obtenu.
 - (a) Que vaut $\mathbf{P}(X \leq k)$? En déduire la loi de X.
 - (b) A l'aide des guestions précédentes, donner la valeur de $\mathbf{E}(X)$.
 - (c) En déduire que $\lim_{N \to +\infty} \frac{\mathbf{E}(X)}{N} = \frac{n}{n+1}$.

Exercice 4. Soient X et Y deux variables aléatoires définies sur $(\Omega, \mathcal{A}, \mathbf{P})$, indépendantes, de même loi géométrique sur \mathbb{N} de paramètre $p \in]0,1[$.

- (1) Calculer $\mathbf{P}(Y \geq X)$; étudier le cas particulier $p = \frac{1}{2}$.
- (2) Calculer $\mathbf{P}(Y=X)$; étudier le cas particulier $p=\frac{1}{2}$.

Exercice 5. (cf. Foata-Fuchs Ch 7, exercice 9) On suppose que le nombre N d'œufs pondus par une tortue au cours d'une ponte suit une loi de Poisson $\mathcal{P}(\lambda)$. Chaque œuf arrive à éclosion (indépendamment les uns des autres) avec une probabilité p. On note X le nombre de bebés tortues issus d'une ponte. Déterminer la loi de X. On note Y le nombre d'œufs qui n'arrivent pas à éclosion, déterminer la loi de Y. Les variables X et Y sont-elles indépendantes?

Réciproquement, soient X et Y deux variables aléatoires indépendantes suivant des lois de Poisson de paramètres λ et μ respectivement. Si $n \in \mathbb{N}$, déterminer la loi conditionnelle de X sachant que X + Y = n.

Exercice 6. On considère des variables aléatoires à valeurs entières N et $(X_i)_{i\in\mathbb{N}}$ définies sur $(\Omega, \mathcal{A}, \mathbf{P})$. On suppose les X_i indépendantes et de même loi et on pose, pour tout $\omega \in \Omega$, $S_0 = 0$

$$S_N(\omega) = \sum_{1}^{N(\omega)} X_k(\omega).$$

On suppose en outre que les X_i et N admettent des espérances. Démontrer l'identité de Wald :

$$\mathbf{E}(S_N) = \mathbf{E}(N) \mathbf{E}(X).$$

Exercice 7. Soit X une variable aléatoire réelle. On suppose qu'il existe a > 0 tel que e^{aX} admette une espérance.

Montrer que pour tout réel t,

$$\mathbf{P}(X \ge t) \le e^{-at} \, \mathbf{E} \left(e^{aX} \right).$$

Exercice 8. Soient X_1, \dots, X_n des variables aléatoires à valeurs réelles *indépendantes*. On suppose que pour tout $i \in \{1, \dots, n\}$, X_i suit une loi de Bernoulli de paramètre p_i et on note $X = \sum_{i=1}^{n} X_i$ et μ l'espérance de X.

- (1) Calculer l'espérance de X.
- (2) Calculer $\mathbf{E}\left(e^{tX_i}\right)$.
- (3) Montrer que pour tout $t \in \mathbb{R}$, $\mathbf{E}(e^{tX_i}) \leq e^{p_i(e^t-1)}$.
- (4) Déduire de l'exercice précédent que pour tout $\delta > 0$ et tout t > 0, on a

$$\mathbf{P}\left(X \geq (1+\delta)\mu\right) \leq \frac{e^{\mu\left(e^t-1\right)}}{e^{t(1+\delta)\mu}}.$$

(5) En posant $t = \ln(1 + \delta)$, en déduire que

$$\mathbf{P}(X \ge (1+\delta)\mu) \le \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu}.$$

Exercice 9. Soit f une fonction continue sur I = [0,1] à valeurs réelles. Pour tout $n \in \mathbb{N}^*$ on note

$$B_n(x) = \sum_{k=0}^n f\left(\frac{k}{n}\right) \binom{n}{k} x^k (1-x)^{n-k}.$$

On considère une suite (X_n) de variables aléatoires indépendantes de même loi de Bernoulli $\mathcal{B}(1,x)$ définies sur $(\Omega, \mathcal{A}, \mathbf{P})$ et on définit, pour tout $n \in \mathbb{N}^*$, $S_n = \sum_{k=1}^n X_k$.

- (1) Calculer $\mathbf{E}\left(f\left(\frac{S_n}{n}\right)\right)$.
- (2) Pour tout $\varepsilon > 0$ on note

$$\delta(\varepsilon) = \sup_{(x,y)\in I^2, |x-y|\leq \varepsilon} |f(x) - f(y)|.$$

Expliquer pourquoi $\delta(\varepsilon)$ tend vers 0 quand ε tend vers 0.

Montrer que

$$\sup_{x \in [0,1]} |B_n(x) - f(x)| \le \delta(\varepsilon) + \frac{2||f||_{\infty}}{n\varepsilon^2}.$$

(3) En déduire que la suite $(B_n)_{n\in\mathbb{N}}$ converge uniformément vers f sur I.

Exercice 10. Soit $p \in]0,1[$. On considère une suite $(X_n)_{n\geq 1}$ de variables aléatoires indépendantes de même loi de Bernoulli $\mathcal{B}(1,p)$.

Pour tout entier $n \geq 1$, on définit

$$Y_n = X_n X_{n+1}$$
.

- (1) Soit $n \in \mathbb{N}^*$.
 - (a) Montrer que Y_n est une variable aléatoire et déterminer sa loi.
 - (b) Calculer l'espérance et la variance de Y_n .
- (2) Les variables Y_1 et Y_2 sont-elles indépendantes?
- (3) Soit Z une variable aléatoire de loi uniforme sur $\{-1,1\}$ et soit T une variable aléatoire admettant un moment d'ordre 2 et indépendante de Z. On pose U=ZT.
 - (a) U et T sont-elles indépendantes?
 - (b) Calculer Cov(T, U).
 - (c) Quelle conclusion pouvez-vous en tirer?
- (4) Soient $i \in \mathbb{N}^*$ et $j \in \mathbb{N}^*$ deux entiers. Montrer que si |i-j| > 1, $Cov(Y_i, Y_j) = 0$.
- (5) Calculer $Cov(Y_i, Y_{i+1})$ pour tout $i \in \mathbb{N}^*$.
- (6) Pour tout entier $n \in \mathbb{N}^*$, on pose

$$Z_n = \frac{\sum_{1}^{n} Y_k}{n}.$$

- (a) Calculer l'espérance de Z_n .
- (b) Montrer que pour tout $n \in \mathbb{N}^*$ on a :

$$\mathbf{V}(Z_n) = \frac{1}{n^2} \left(\sum_{i=1}^n \mathbf{V}(Y_i) + 2 \sum_{1 \le i < j \le n} Cov(Y_i, Y_j) \right).$$

(c) Déuire de ce qui précède que

$$\mathbf{V}(Z_n) = \frac{p^2(1-p)(n+3np-2p)}{n^2}$$

(d) Montrer que (Z_n) converge en probabilité vers p^2

Exercice 11. On note $\mathcal P$ l'ensemble des nombres premiers et, pour tout $p \in \mathcal P$, on note ν_p la valuation p-adique: pour tout entier $n \neq 0$, $v_p(n)$ est l'exposant de p dans sa décomposition en facteurs premiers. Pour tout réel s > 1, on note $\zeta(s) = \sum_{\mathbb N^*} \frac{1}{n^s}$.

On considère une variable aléatoire X à valeurs dans \mathbb{N}^* de loi donnée par

$$\mathbf{P}(X=n) = \frac{1}{\zeta(s)} \frac{1}{n^s}.$$

- (1) Montrer que les variables aléatoires $(\nu_p(X))_{p\in\mathcal{P}}$ sont indépendantes et déterminer, pour tout $p\in\mathcal{P}$ la loi de $\nu_p(X)$.
- (2) En calculant de deux façon différentes $\mathbf{P}\left(\bigcap (\nu_p(X)=0)\right)$, en déduire l'identité d'Euler

$$\frac{1}{\zeta} = \prod_{p \in \mathcal{P}} \left(1 - \frac{1}{p^s} \right).$$

- (3) Une application f de (\mathbb{N}^*, \times) dans (\mathbb{C}, \times) est dite multiplicative si pour tout couple (m, n) d'entiers non nuls f(mn) = f(m)f(n).
 - i) Donner un exemple non trivial d'une telle application.

- ii) Montrer qu'une telle fonction est entièrement déterminée par $(f(p))_{p\in\mathcal{P}}.$
- iii) Montrer que la fonction χ définie par

$$\chi(n) = \begin{cases} 0 & \text{si} \quad n \equiv 0 \mod 3 \\ 1 & \text{si} \quad n \equiv 1 \mod 3 \\ -1 & \text{si} \quad n \equiv 2 \mod 3 \end{cases}$$

est multiplicative.

- (4) Montrer que les variables aléatoires $\left(\chi(p)^{\nu_p(X)}\right)_{p\in\mathcal{P}}$ sont indépendantes.
- (5) Montrer que

$$\chi(X) = \prod_{p \in \mathcal{P}} \chi(p)^{\nu_p(X)}$$

et calculer son espérance.

(6) En déduire que

$$\left(\sum_{n\in\mathbb{N}^*}\frac{\chi(n)}{n^s}\right)^{-1}=\prod_{p\in\mathcal{P}}\left(1-\frac{\chi(p)}{p^s}\right).$$

(7) En déduire qu'il existe une infinité de nombres premiers congrus à 1 modulo 3 et une infinité de nombres premiers congrus à 2 modulo 3.