Exercice 1 Déterminer, si elle existe, la limite de

$$n \mapsto \int_0^{+\infty} e^{-t^n} \, dt.$$

Exercice 2 On pose

$$u_n(x) = (-1)^{n+1} x^{2n+2} \ln x, \quad x \in]0,1]$$
 et $u_n(0) = 0$

(1) Calculer

$$\sum_{n=0}^{+\infty} u_n(x)$$

- (2) Montrer que la série des u_n converge uniformément sur [0,1].
- (3) En déduire l'égalité

$$\int_0^1 \frac{\ln x}{1+x^2} \, dx = \sum_{n=0}^\infty \frac{(-1)^{n+1}}{(2n+1)^2}$$

Exercice 3

(1) En développant en série de Fourier la fonction 2π périodique définie par $f(x) = \cosh \alpha x$ sur $]-\pi,p]$, montrer que

$$\forall \alpha \in [0, 1], \sum_{n=1}^{+\infty} \frac{2\alpha}{\alpha^2 + n^2} = \pi \frac{ch\pi\alpha}{sh\pi\alpha} - \frac{1}{\alpha}$$

(prolongée par continuité en 0).

(2) En intégrant sur [0,1], en déduire la valeur de

$$\prod_{n=1}^{+\infty} \left(1 + \frac{1}{n^2} \right)$$

Exercice 4 On considère la série $\sum \frac{1}{n} \cos^n x \sin(nx)$. Étudier sa convergence.

- (1) Montrer que sa somme f est de classe \mathscr{C}^1 sur $\mathbf{R} \setminus \pi \mathbf{Z}$. Déterminer f'.
- (2) Expliciter f

Exercice 5 On définit, sur [0,1] la suite (u_n) par

$$u_n(x) = \begin{cases} n^2 x (1 - nx) & \text{si} \quad x \in [0, 1/n] \\ 0 & \text{sinon} \end{cases}$$

- (1) Étudier la convergence de la suite (u_n)
- (2) Calculer $\int_0^1 u_n(t) dt$.
- (3) Que peut-on en conclure?

Exercice 6 Étudier l'existence et la valeur éventuelle de la limite de la suite

$$\int_{1}^{+\infty} e^{-t} \sin^{n}(t) dt.$$

Exercice 7

(1) Montrer que

$$x \mapsto \int_0^{+\infty} \frac{e^{-xt}}{1+t^2} \, dt$$

définit une fonction continue sur $[0, +\infty[$.

(2) Montrer que même que

$$g: x \mapsto \int_0^{+\infty} \frac{e^{-xt}}{1+t} dt$$

définit une fonction continue sur $]0, +\infty[$.

(3) Déterminer, après avoir justifié son existence, la limite de g(x) quand $x \to \infty$

Exercice 8 Montrer que

$$f(x) = \int_0^{+\infty} \frac{e^{-xt}}{1+t^2} dt$$

est, sur $]0,+\infty[$ solution de l'équation différentielle

$$f" + f = \frac{1}{x}.$$

Calculer g.

Exercice 9 Pour $y \in \mathbf{R}$, on pose

$$F(y) = \int_{\mathbf{R}} e^{-\pi t^2} e^{-2\pi i yt} dt.$$

- (1) Montrer que F est de classe \mathscr{C}^{∞} sur \mathbf{R} .
- (2) Montrer que F est solution d'une équation différentielle du premier ordre.
- (3) Expliciter F.