2. En déduire que les solutions de (*) telles que :

$$\left(x_1(0), \dots, x_n(0); \frac{\mathrm{d}x_1}{\mathrm{d}t}(0), \dots, \frac{\mathrm{d}x_n}{\mathrm{d}t}(0)\right) \in \mathscr{D}_{\mathrm{H}}$$

sont périodiques de période $\frac{2\pi}{\lambda}$.

- 3. a. Démontrer que le système hamiltonien H a n! positions d'équilibre qui sont des minima.
 - b. Calculer la valeur de H en ces positions d'équilibre.
- III) On suppose dans cette partie que $\lambda = 0$.
 - 1. Montrer que les fonctions $t \mapsto \operatorname{Tr}(L^k(t))$ sont des constantes du mouvement du système hamiltonien H.
 - 2. En déduire que les positions $x_i(t)$ des particules sont données par les valeurs propres d'une matrice qui dépend linéairement de t.
 - 3. Démontrer que les positions $x_i(t)$ ont des expressions asymptotiques :

$$x_i(t) = y_i^+ t + x_i^+ + O\left(\frac{1}{t}\right) \qquad t \longrightarrow + \infty$$

$$x_i(t) = y_i^- t + x_i^- + O\left(\frac{1}{t}\right) \qquad t \longrightarrow -\infty$$
.

4. Démontrer que pour tout k = 1, ..., n:

$$\sum_{i=1}^{n} (y_i^+)^k = \sum_{i=1}^{n} (y_i^-)^k.$$

5. En déduire l'existence d'une permutation $s \in \mathfrak{S}_n$ telle que :

$$y_i^+ = y_{s(i)}^-.$$

6. Supposons que les particules sont rangées dans l'ordre suivant :

$$x_1(t) < x_2(t) < ... < x_n(t)$$
.

Montrer que:

$$y_1^- = y_n^+, \qquad y_2^- = y_{n-1}^+, ..., \qquad y_n^- = y_1^+...$$

PROBABILITÉS ET STATISTIQUES

EPREUVE DE PROBABILITES ET STATISTIQUES

Notations, Définitions, Rappels.

Soit (Ω, \mathcal{F}, P) un espace probabilisé.

1. Si \mathcal{A} et \mathcal{B} sont deux sous-tribus de \mathcal{F} , on définit leur coefficient de mélange par

$$\alpha(\mathcal{A}, \mathcal{B}) = \sup_{A \in \mathcal{A}, B \in \mathcal{B}} |P(A \cap B) - P(A)P(B)|.$$

2. Si f est une fonction décroissante sur l'intervalle I, on définit sa pseudo-inverse f^{-1} sur $[\inf(f(I)), \sup(f(I))[$ par $f^{-1}(s) = \inf\{x \in I : f(x) \leq s\}.$

- 3. Si X est une variable aléatoire, on note $\mathcal{F}(X)$ la tribu engendrée par X et H_X la fonction de queue de la distribution de X, définie sur \mathbb{R} par $H_X(x) = P(X > x)$. On note Q_X la fonction de quantile de X, $Q_X = H_X^{-1}$. Lorsque X est intégrable ou positive, on note E(X) l'espérance mathématique de X, $E(X) = \int X dP$.
- 4. Pour tout $p \in [1, \infty[$, \mathbb{L}^p désigne l'espace des variables aléatoires X telles que $|X|^p$ soit intégrable, muni de sa semi-norme usuelle $||X||_p = (E|X|^p)^{1/p}$. \mathbb{L}^∞ désigne l'espace des variables aléatoires X presque surement bornées, la semi-norme $||X||_\infty$ étant définie comme la borne supérieure essentielle de |X|, c'est à dire $||X||_\infty = \inf\{x \in \mathbb{R} : H_{|X|}(x) = 0\}$.
- 5. Soient X et Y deux variables aléatoires. Lorsque X, Y et XY sont intégrables, on définit la covariance entre X et Y par cov(X,Y) = E(XY) E(X)E(Y). Lorsque X est de carré intégrable, on définit la variance de X par var(X) = cov(X,X).
- 6. On rappelle le critère de relative compacité en loi: pour une suite de lois de probabilité (ν_n) sur \mathbb{R} , les propriétés (i) et (ii) ci-dessous sont équivalentes,
- (i) De toute sous suite de (ν_n) on peut extraire une sous-suite qui converge faiblement vers une loi de probabilité.
 - (ii) Pour tout $\varepsilon > 0$, il existe K > 0, tel que $\nu_n([-K, K]) \ge 1 \varepsilon$ pour tout n.
- 7. Un espace mesuré (A, A, μ) est dit σ -fini si A s'exprime comme une réunion au plus dénombrable d'ensembles mesurables de mesure finie.

On rappelle l'énoncé du théorème de Fubini pour une fonction positive: soit $(A_i, A_i, \mu_i)_{i=1,2}$ deux espaces mesurés σ -finis et f une application mesurable et positive, définie sur $(A_1 \times A_2, A_1 \otimes A_2)$, alors les applications

$$f_1: x_1 \longrightarrow \int_{A_2} f(x_1, x_2) d\mu_2(x_2) , f_2: x_2 \longrightarrow \int_{A_1} f(x_1, x_2) d\mu_1(x_1)$$

sont mesurables. De plus

$$\int_{A_1 \times A_2} f d(\mu_1 \otimes \mu_2) = \int_{A_1} f_1 d\mu_1 = \int_{A_2} f_2 d\mu_2$$

8. On rappelle le résultat de densité suivant:

soit \mathcal{A} une algèbre de Boole, $\mathcal{A} \subset \mathcal{F}$. Soit B un élément de la tribu engendrée par \mathcal{A} . Pour tout ε strictement positif, il existe une partie A élément de \mathcal{A} telle que $\|\mathbb{I}_A - \mathbb{I}_B\|_1 \leq \varepsilon$.

Préliminaires

- 1. Soit X une variable aléatoire.
- a. Prouver que la fonction H_X est continue à droite en tout point.
- **b.** Montrer que pour tout $(x,s) \in \mathbb{R} \times]0,1[$, on a

$$x < Q_X(s)$$
 si et seulement si $s < H_X(x)$.

- c. Soit U une variable aléatoire de loi uniforme sur]0,1[. Prouver que $Q_X(U)$ a même loi que X.
- d. Supposant que $X \in \mathbb{L}^p$, prouver que $Q^p_{|X|}$ est intégrable (par rapport à la mesure de Lebesgue) sur]0,1[et que $E(|X|^p)=\int_0^1 Q^p_{|X|}(t)dt.$

2.

a. Prouver que, pour tout couple (X,Y) de variables aléatoires positives on a:

$$E(XY) = \int_{\mathbb{R}_+ \times \mathbb{R}_+} P(X > x, Y > y) dx dy.$$

En déduire que

$$E(XY) \leq \int_{\mathbb{R}_+ \times \mathbb{R}_+} \left[\int_0^1 \mathbb{I}_{(s < H_X(x), s < H_Y(y))} ds \right] dx dy.$$

b. Démontrer que si (X,Y) est un couple de variables aléatoires tel que $Q_{|X|}Q_{|Y|}$ est intégrable (par rapport à la mesure de Lebesgue) sur]0,1[, alors XY est intégrable.

3. Soit \mathcal{A} et \mathcal{B} deux sous-tribus de \mathcal{F} . Que signifie $\alpha(\mathcal{A}, \mathcal{B}) = 0$? Montrer que $\alpha(\mathcal{A}, \mathcal{B}) \leq 1/4$.

Première Partie

Α

Soit X et Y deux variables intégrables telles que $Q_{|X|}Q_{|Y|}$ soit intégrable sur]0,1[. On note α le coefficient de mélange entre $\mathcal{F}(X)$ et $\mathcal{F}(Y)$. Le but de ce paragraphe est d'établir une majoration fine de la covariance entre X et Y.

1

a. Prouver que XY est intégrable.

b. Montrer que

$$|P(X > x, Y > y) - P(X > x)P(Y > y)| \le \int_0^\alpha \mathbb{1}_{(s < H_X(x), s < H_Y(y))} ds.$$

2. On suppose que X et Y sont positives. Etablir que

$$|\text{cov}(X,Y)| \leq \int_0^{\alpha} Q_X(s)Q_Y(s)ds.$$

3. Démontrer que

$$|\operatorname{cov}(X,Y)| \le 4 \int_0^{\alpha} Q_{|X|}(s) Q_{|Y|}(s) ds.$$

4.

a. Soit $1 et <math>1 < r < +\infty$ tels que $\frac{1}{p} + \frac{1}{q} + \frac{1}{r} = 1$. Prouver que si $X \in \mathbb{L}^p$ et $Y \in \mathbb{L}^q$ on a

$$|\text{cov}(X,Y)| \le 4\alpha^{1/r} ||X||_p ||Y||_q$$

b. Prouver que si $X \in \mathbb{L}^{\infty}$ et $Y \in \mathbb{L}^{\infty}$ on a

$$|\operatorname{cov}(X,Y)| \le 4\alpha ||X||_{\infty} ||Y||_{\infty}.$$

Dans toute la suite du problème, $\{X_j, j \in \mathbb{Z}\}$ est une suite stationnaire de variables aléatoires. Ce qui signifie que pour toute partie finie J de \mathbb{Z} et tout entier m, les vecteurs aléatoires $(X_j, j \in J)$ et $(X_{j+m}, j \in J)$ ont même loi. Pour chaque entier j on note $\mathcal{M}_{-\infty}^j$ la tribu engendrée par $\{X_i, i \leq j\}$ et $\mathcal{M}_j^{+\infty}$ la tribu engendrée par $\{X_i, i \geq j\}$. On définit la suite $(\alpha_n)_{n\geq 0}$ des coefficients de mélange de $\{X_j, j \in \mathbb{Z}\}$ par $\alpha_0 = 1$ et $\alpha_n = \alpha(\mathcal{M}_{-\infty}^0, \mathcal{M}_n^{+\infty})$ pour $n \geq 1$. La fonction de mélange $\alpha(\cdot)$ est définie sur \mathbb{R}_+ par $\alpha(t) = \alpha_{[t]}$, où [t] désigne la partie entiere de t. On note Q la fonction de quantile de $|X_0|$. Enfin, pour chaque entier $n \geq 1$ on note S_n la somme partielle $X_1 + \cdots + X_n$. On dit que la suite $\{X_j, j \in \mathbb{Z}\}$ est mélangeante si α_n tend vers 0 lorsque n tend vers 1'infini.

On suppose que X_0 est d'espérance nulle.

 \mathbf{B}

1.

- a. Montrer que $\alpha(\cdot)$ est décroissante puis que le domaine de définition de la fonction pseudo-inverse α^{-1} est]0,1[lorsque la suite $\{X_i,j\in\mathbb{Z}\}$ est mélangeante.
 - b. Prouver que $\alpha_n = \alpha(\mathcal{M}_{-\infty}^j, \mathcal{M}_{j+n}^{+\infty})$ pour tout $j \in \mathbb{Z}$.

On considère la condition suivante:

(C) la suite $\{X_j, j \in \mathbb{Z}\}$ est mélangeante et $\alpha^{-1}Q^2$ est intégrable sur]0,1[.

2.

- a. Lorsque $\{X_j, j \in \mathbb{Z}\}$ est une suite de variables aléatoires indépendantes équidistribuées avec X_0 de carré intégrable, montrer que (C) est satisfaite. Que vaut alors $\int_0^1 \alpha^{-1}(s)Q^2(s)ds$?
- b. Quand $X_0 \in \mathbb{L}^r$ pour un réel $r \in]2, \infty[$ et lorsque la série $\sum n^{\frac{2}{r-2}}\alpha_n$ est convergente, montrer que (C) est réalisée (indication: établir l'identité $\int_0^1 (\alpha^{-1}(s))^{r/r-2} ds = \sum_{n\geq 0} (n+1)^{r/r-2} (\alpha_n \alpha_{n+1})$).
- c. Montrer qu'il en est de même lorsque la série $\sum \alpha_n$ est convergente et $X_0 \in \mathbb{L}^{\infty}$. On suppose jusqu'à la fin du problème que la condition (C) est réalisée et on pose

$$I = \int_0^1 \alpha^{-1}(s)Q^2(s)ds .$$

3.

- a. Montrer que X₀ est de carré intégrable.
- b. Soit h une fonction numérique de variable réelle. Etablir les identités

(i)
$$\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{n} h(\text{cov}(X_i, X_j)) = \sum_{k=-n}^{n} (1 - \frac{|k|}{n}) h(\text{cov}(X_0, X_k))$$

(ii)
$$I = \sum_{k>0} \int_0^{\alpha_k} Q^2(t) dt$$

c. Montrer que la série $\sum \alpha_n$ est convergente dès lors que X_0 est presque surement non nulle.

4.

a. Démontrer que la série $\sum \operatorname{cov}(X_0, X_k)$ est absolument convergente.

b. Etablir l'inégalité

$$var(S_n) \leq 4nI, \ \forall n \geq 1.$$

c. Montrer que $\frac{1}{n} \text{var}(S_n)$ converge vers $\text{var}(X_0) + 2 \sum_{k=1}^{\infty} \text{cov}(X_0, X_k)$.

Deuxième Partie

On note désormais σ^2 la somme de la série $var(X_0) + 2\sum_{k=1}^{\infty} cov(X_0, X_k)$.

L'objectif de cette partie est de démontrer un théorème central limite. Plus précisément on a en vue d'établir que S_n/\sqrt{n} converge vers la loi normale centrée et de variance σ^2 lorsque σ^2 est supposé non nul.

A

1. Quel est le comportement de S_n/\sqrt{n} lorsque $\sigma=0$?

Jusqu'à la fin du problème on suppose que σ est non nul.

- 2. Soit (ν_n) une suite de lois de probabilité sur \mathbb{R} telle que la suite $\int x^2 d\nu_n(x)$ soit bornée. On suppose en outre que $\int (i\lambda x) \exp(i\lambda x) d\nu_n(x)$ tend vers 0 lorsque n tend vers $+\infty$ pour tout réel λ . Il s'agit de démontrer que ν_n converge faiblement vers la loi normale centrée réduite.
- a. Montrer qu'il en est ainsi si l'on suppose que la suite (ν_n) converge faiblement vers une loi de probabilité ν (indication: étudier la fonction caractéristique de ν).
 - b. Conclure.

B

On suppose pour tout ce paragraphe que $X_0 \in \mathbb{L}^{\infty}$. Soit (m_n) une suite d'entiers tendant vers $+\infty$, telle que $2m_n \leq n$, pour tout n. On pose

$$D_n = \{(l,j) \in [1,n] \times [1,n] : |j-l| \le m_n\},\$$

puis, pour tout $j \in [1, n]$,

$$D_n(j) = \{l \in [1, n] : |j - l| \le m_n\}.$$

Soit $V_n = \sum_{(l,j) \in D_n} \text{cov}(X_j, X_l)$.

1. Démontrer que $\frac{V_n}{n}$ converge vers σ^2 lorsque n tend vers $+\infty$.

Jusqu'à la fin de ce paragraphe **B**, on suppose n assez grand pour que V_n soit positif et on pose pour tout $l \in \mathbb{Z}$ $Y_{l,n} = X_l/\sqrt{V_n}$. On définit ensuite, pour tout $j \in [1,n]$, $T_n(j) = \sum_{l \in D_n(j)} Y_{l,n}$ et $T_n = \sum_{l=1}^n Y_{l,n}$. On fixe enfin un réel λ .

2. Vérifier la validité de la décomposition suivante:

$$(i\lambda - T_n)e^{i\lambda T_n} = i\lambda e^{i\lambda T_n}A_n - e^{i\lambda T_n}B_n - C_n$$

οù

$$A_n = (1 - \sum_{j=1}^n T_n(j) Y_{j,n}), B_n = \sum_{j=1}^n Y_{j,n} (1 - e^{-i\lambda T_n(j)} - i\lambda T_n(j))$$

Options 16/21

$$C_n = \sum_{i=1}^n Y_{j,n} e^{i\lambda(T_n - T_n(j))}.$$

3.

a. Montrer que $|e^{i\lambda x} - 1 - i\lambda x| \le \lambda^2 x^2/2$, pour tout réel x.

b. En déduire l'existence d'une constante positive K_1 telle que, pour tout nassez grand $E|B_n| \leq K_1 \frac{m_n}{\sqrt{n}}$.

c. Démontrer qu'il existe une constante positive K_2 telle que $|E(C_n)| \leq K_2 \sqrt{n} \alpha_{m_n}$, pour tout n assez grand.

4. Soit $m \in \mathbb{N}$, $(j, l, j', l') \in \mathbb{Z}^4$ tels que $|j - l| \le m$ et $|j' - l'| \le m$.

a. Si $|j-j'| \geq 2m$, montrer que:

$$|\operatorname{cov}(X_j X_l, X_{j'} X_{l'})| \le 4 ||X_0||_{\infty}^4 \alpha_{|j-j'|-2m}.$$

b. Posant $k = \min(|j-j'|, |j-l|, |j-l'|)$, prouver que:

$$|\operatorname{cov}(X_j X_l, X_{j'} X_{l'})| \leq 8||X_0||_{\infty}^4 \alpha_k.$$

5. Montrer que A_n est d'espérance nulle puis qu'il existe une constante positive K_3 telle que $E(A_n^2) \leq K_3 m_n^2/n$ pour tout n assez grand.

6. a. Démontrer que $m\alpha_m$ tend vers 0 lorsque m tend vers $+\infty$. En déduire l'existence d'une suite d'entiers (m_n) telle que $\sqrt{n}\alpha_{m_n}$ et m_n/\sqrt{n} tendent vers 0 lorsque n tend vers l'infini.

b. En conclure que $\frac{S_n}{\sigma\sqrt{n}}$ converge en loi vers la loi normale centrée et réduite.

 \mathbf{C}

Le but de ce paragraphe est d'étendre le théorème central limite démontré en B du cas borné au cas général (c'est à dire sous la seule condition (C)).

Soit K un réel positif. On introduit

$$f_K(x) = x \text{ lorsque } |x| \le K$$

= 0 lorsque $|x| > K$.

On pose $Z_n = \frac{1}{\sigma \sqrt{n}} \sum_{j=1}^n X_j, Z'_n(K) = \frac{1}{\sigma \sqrt{n}} \sum_{j=1}^n [f_K(X_j) - E(f_K(X_j))]$ et $Z_n''(K) = Z_n - Z_n'(K).$

1. Etablir la majoration

$$E(Z_n''^2(K)) \le \frac{4}{\sigma^2} \int_0^{H_{|X_0|}(K)} \alpha^{-1}(s) Q^2(s) ds.$$

a. Prouver que la série $\sum \operatorname{cov}(f_K(X_0), f_K(X_k))$ est absolument convergente. b. Soit $v_K = \operatorname{var}(f_K(X_0)) + 2\sum_{k=1}^{\infty} \operatorname{cov}(f_K(X_0), f_K(X_k))$. Montrer que v_K

converge vers σ^2 lorsque K tend vers $+\infty$.

3. Conclure.