PROBABILITÉS ET STATISTIQUES

DÉFINITIONS. NOTATIONS ET RAPPELS

Dans tout le problème \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} et \mathbb{C} désignent respectivement les ensembles des entiers naturels, des entiers relatifs, des rationnels, des réels et des complexes. Si n est un entier $(n \ge 1)$, \mathbb{R}^n est l'ensemble des n-uples de réels. Si $(x_i, i \in \mathbb{I})$ désigne une famille de nombres réels, on note sup x_i leur borne supérieure et $\inf_{i \in \mathbb{I}} x_i$ leur borne inférieure.

$$\mathbb{R}_{+} = \left\{ x \in \mathbb{R}, \, x \geq 0 \right\} \; ; \qquad \mathbb{R}_{+}^{\star} = \left\{ x \in \mathbb{R}, \, x > 0 \right\} \; ; \qquad \overline{\mathbb{R}}_{+} = \mathbb{R}_{+} \; \cup \left\{ + \infty \right\}.$$

2º Soit (Ω, \mathcal{A}, P) un espace probabilisé. On dit que V est une variable aléatoire à valeurs dans \mathbb{R}^n si V est une application mesurable de (Ω, \mathcal{A}) dans $(\mathbb{R}^n, \mathcal{R}^n)$ où \mathcal{R}^n désigne la tribu borélienne de \mathbb{R}^n . Lorsque n=1 on dit que V est une variable aléatoire réelle. On note P_V la loi de V, c'est-à-dire la probabilité sur \mathcal{R}^n image de P par V. Par abus de langage, V désigne aussi la classe de P-équivalence de l'application V. Pour tout A de \mathcal{R}^n , on note

$$\{ X \in A \} = X^{-1} (A).$$

La notion de variable aléatoire complexe est obtenue en identifiant $\mathbb C$ et $\mathbb R^2$.

On note 1_A la fonction indicatrice d'un ensemble $A \in \mathcal{B}$, c'est-à-dire la variable aléatoire réelle qui vaut 1 sur A, et 0 sur le complémentaire de A.

- 3º Si $(V_i, i \in I)$ est une famille de variables aléatoires (à valeurs dans \mathbb{R}^n) on note σ $(V_i, i \in I)$ la plus petite soustribu de \mathcal{A} rendant mesurables les applications V_i de Ω dans \mathbb{R}^n pour tout $i \in I$. Une application mesurable de $(\mathbb{R}^n, \mathcal{R}^n)$ dans $(\mathbb{R}^d, \mathcal{R}^d)$ est dite borélienne.
- 4º Un processus ξ à valeurs dans \mathbb{R}^d est la donnée d'une famille $(\xi_t, t \in \mathbb{R}_+)$ de variables aléatoires d-dimensionnelles. On dit que ξ est (presque sûrement) continu s'il existe $A \in \mathcal{A}$, de probabilité 1 tel que : pour tout ω de A, l'application $t \in \mathbb{R}_+ \to \xi_t(\omega) \in \mathbb{R}^d$ est continue.

On dit que deux processus continus ξ et ξ' à valeurs dans \mathbb{R}^d ont même loi si : pour toute suite finie t_0 , t_1 , ..., t_n de réels positifs, les lois de $(\xi_{t_0}, \xi_{t_1}, ..., \xi_{t_n})$ et $(\xi'_{t_0}, \xi'_{t_1}, ..., \xi'_{t_n})$ coïncident.

- 5º On note L² (Ω , \mathcal{A} , P) l'espace vectoriel des classes de P-équivalence de variables (réelles ou complexes) sur (Ω , \mathcal{A} , P) dont le module est de carré intégrable, muni de la norme $\|\cdot\|_2$. Si V est une variable aléatoire, on note V \in L² (Ω , \mathcal{A} , P) par l'abus de langage précisé au 2º.
- 6º Soient \mathcal{F} une sous-tribu de \mathcal{A} et V une variable aléatoire intégrable. $E[V|\mathcal{F}]$ désigne l'espérance conditionnelle de V par rapport à \mathcal{F} : $E[V|\mathcal{F}]$ est \mathcal{F} -mesurable et vérifie $E[V|\mathcal{T}] = E[E[V|\mathcal{F}]|\mathcal{T}]$ pour tout ensemble \mathcal{F} -mesurable F.

Si V est de la forme 1_A $(A \in \mathcal{A})$ on notera aussi $E [1_A \mid \mathcal{F}]$ sous la forme $P [A \mid \mathcal{F}]$; si \mathcal{F} est la tribu σ (M) engendrée par la variable aléatoire M, on abrégera $E [. \mid \mathcal{F}]$ par $E [. \mid M]$.

7º Une variable aléatoire V (respectivement un processus ξ) est dit indépendant d'une sous-tribu $\mathcal H$ de $\mathcal H$ si les tribus σ (V) et $\mathcal H$ (respectivement σ (ξ_t , $t \in \mathbb R_+$) et $\mathcal H$) sont indépendantes.

Soient $(N_i, i \in I)$ et $(M_k, k \in K)$ deux familles de variables (à valeurs dans \mathbb{R}^d). On rappelle que les tribus $\sigma(N_i, i \in I)$ et $\sigma(M_k, k \in K)$ qu'elles engendrent sont indépendantes dès que : pour toute famille finie f_1 , f_2 , ..., f_n , g_1 , ..., g_m de fonctions boréliennes bornées (ou seulement continues bornées) sur \mathbb{R}^d et pour tout $(i_1, ..., i_n) \in I^n$, pour tout $(k_1, ..., k_m) \in K^m$,

$$\mathbb{E} \left[f_{_{1}} \left(\mathbf{N}_{t_{_{1}}} \right) \dots f_{_{n}} \left(\mathbf{N}_{t_{_{n}}} \right) \; g_{_{1}} \left(\mathbf{M}_{k_{_{1}}} \right) \dots \; g_{_{m}} \left(\mathbf{M}_{k_{_{m}}} \right) \right] \\ \hspace{0.5cm} = \hspace{0.5cm} \mathbb{E} \left[f_{_{1}} \left(\mathbf{N}_{t_{_{1}}} \right) \dots f_{_{n}} \left(\mathbf{N}_{t_{_{n}}} \right) \right] \; . \; \; \mathbb{E} \left[\; g_{_{1}} \left(\mathbf{M}_{k_{_{1}}} \right) \dots \; g_{_{m}} \left(\mathbf{M}_{k_{_{m}}} \right) \right] .$$

- 8º On dit de même que des éléments aléatoires (ensembles, variables, tribus, processus, ...) sont indépendants conditionnellement à un événement A de $\mathcal A$ s'ils sont indépendants lorsque l'on munit $(\Omega, \mathcal A)$ de la probabilité conditionnelle $P[.|A] = \frac{P[.\cap A]}{P[A]}$.
- 9º Soient \mathcal{F} une sous-tribu de \mathcal{A} , M une variable aléatoire \mathcal{F} -mesurable (à valeurs dans \mathbb{R}^m) et N une variable aléatoire (à valeurs dans \mathbb{R}^n) indépendante de \mathcal{F} . Si φ est borélienne bornée sur $\mathbb{R}^m \times \mathbb{R}^n$,

$$\mathrm{E}\left[\;\varphi\left(\mathrm{M},\,\mathrm{N}\right)\;\middle|\;\mathfrak{F}\;\right]\quad=\quad\int^{\cdot}\varphi\;\left(\mathrm{M},\,x\right)\,\mathrm{P}_{\mathrm{N}}\left(dx\right)\,.$$

- 10° Une écriture du type : $\int_a^b f(t) dt$ (resp. $\int_{\mathbb{R}^n}^n g(x) dx$) indique que l'on intègre la fonction (borélienne) f (resp. g) par rapport à la mesure de Lebesgue sur l'intervalle [a, b] de \mathbb{R} (resp. sur \mathbb{R}^n).
- 11º Tous les éléments aléatoires introduits dans la suite sont supposés définis sur le même espace probabilisé (Ω, \mathcal{H}, P) .

PREMIÈRE PARTIE

1º Soit (V_n , $n \ge 1$) une suite de variables aléatoires réelles indépendantes, ayant un moment d'ordre 2 et centrées ($E[V_n] = 0$). On note :

$$b_n = \mathbb{E}\left[V_n^2\right]$$
 et pour $t \in [-1, +1]$, $S_n(t) = \sum_{1 \le k \le n} V_k \exp\left(ik\pi t\right)$

On suppose qu'il existe $\delta > 0$ avec

$$k^{\delta+1/2} b_k < + \infty.$$

- a. Montrer que, pour tout $t \in [-1, +1]$, la suite $(S_n(t), n \ge 1)$ converge dans $L^2(\Omega, A, P)$ vers une variable aléatoire complexe W_t .
 - b. Établir les majorations suivantes :

i)
$$|S_n(t) - S_m(t)|^2 \le \left(\sum_{m \le k \le n} V_k^2 \right) + 2 \sum_{1 \le j \le n-m} |T_k - V_k| V_{k+j}$$
 $(1 \le m < n)$.

ii) E
$$\left[\begin{array}{c|c} V_k V_{k+j} \end{array} \right] \leqslant \left(\begin{array}{c|c} b_k b_{k+j} \end{array} \right)^{1/2} \left(1 \leqslant m, n, j ; m+j \leqslant n \right).$$

iii)
$$\mathbb{E}\left[\left\{\sup_{t\in[-1,+1]} |S_n(t)-S_m(t)|\right\}^2\right] \leqslant \left(1-\sqrt{2}(n-m)\right) \sum_{m< k\leq n} b_k (1\leqslant m< n).$$

c. Montrer que pour toute suite (c_n , $n \ge 1$) de réels on a :

$$c_n \mid 2^{n/4} \leqslant (2^{\delta} - 1)^{-1/2} \cdot \left(\sum_{n \geqslant 1} c_n^2 2^{n(\delta + 1/2)} \right)^{-1/2} \cdot$$

En déduire :

$$2^{n/4} \left(\sum_{n \geq 1} b_k \right)^{1/2} \leq (2^6 - 1)^{-1/2} \left(\sum_{k \geq 1} k^{1/2 + \delta} b_k \right)^{1/2} .$$

d. Soit, pour n entier non nul, $M_n = \sup_{t \in [-1, +1]} \left| S_{2^{n+1}}(t) - S_{2^n}(t) \right|$.

Montrer que
$$\sum_{n\geq 1}$$
 E $[M_n]$ est fini. En déduire : P $\begin{bmatrix} M_n < +\infty \end{bmatrix} = 1$.

Montrer que, pour presque tout ω de $\Omega,$ la suite de fonctions :

$$t \longrightarrow \sum_{1 \le k \le 2^n} V_k(\omega) \exp(ik\pi t) \qquad (n \ge 0, t \in [-1, +1])$$

converge uniformément sur [-1, +1]. En conclure que l'on peut supposer (et c'est ce que l'on fera dans la suite) que W est presque sûrement continu.

2° a. Soit $f \in L^2([-1, +1], du)$ et pour $k \in \mathbb{Z}$:

$$a_k = \frac{1}{2} \int_{-1}^{+1} f(t) \exp(-ik\pi t) dt.$$
 On rappelle : $f(u) = \sum_{k \in \mathbb{Z}} a_k \exp(ik\pi u)$ dans $L^2([-1, +1], du)$.

Montrer que si f est paire, $a_k = a_{-k}$ pour tout entier k.

b. Soit $g \in L^2$ ([0, 1], du). Montrer qu'il existe des coefficients (γ_n , $n \in \mathbb{N}$) tels que :

$$g(u) = \sum_{n \geq 0} \gamma_n \cos n \pi u \quad \text{dans} \quad L^2([0, 1], du).$$

c. En déduire :

i) pour
$$0 \le t \le 1$$
, $1_{\{0,t\}}(u) - t = \frac{2}{\pi} \sum_{k \ge 1} \frac{\sin k\pi t}{k} \cos k\pi u$ dans $L^{2}([0,1], du)$.

ii) pour
$$0 \le t \le s \le 1$$
, $t(1-s) = \frac{2}{\pi^2} \sum_{k \ge 1} \frac{\sin k \pi t \sin k \pi s}{k^2}$.

3º On suppose dorénavant que π^2 n^2 $b_n=2$ $(n\geqslant 1)$; C_t désigne, pour $0\leqslant t\leqslant 1$, la partie imaginaire de \mathbb{W}_t .

- a. Montrer que pour $0 \le t \le 1$, C_t est une variable aléatoire centrée, de variance t (1-t). Calculer $E[C_t C_s]$ pour $0 \le s$, $t \le 1$.
- b. Soit pour t réel positif, $B_t = (1 + t) C_{\frac{t}{1+t}}$. Montrer que pour s et t positifs, $\mathbb{E}[|B_t|B_s] = \inf(t,s)$.

- $4^{\rm o}$ On suppose désormais de plus que chaque variable $\dot{\rm V_n}$ suit une loi de Laplace-Gauss.
 - a. Montrer que les suites de réels $(\lambda_k, k \ge 1)$ telles que la suite $\left(\sum_{1 \le k \le n} \lambda_k V_k, n \ge 1\right)$ converge dans $L^2(\Omega, \mathcal{A}, P)$ sont exactement les suites vérifiant $\sum_{k \ge 1} \frac{\lambda_k^2}{k^2} < + \infty$, et montrer que dans ce cas la limite dans L^2 est une variable aléatoire gaussienne, centrée, de variance $\frac{2}{\pi^2} \sum_{k \ge 1} \frac{\lambda_k^2}{k^2}$.
 - b. Soient $n \in \mathbb{N}$, $0 = t_0 < t_1 < ... < t_n$ des réels et $(u_1, ..., u_n) \in \mathbb{R}^n$;

Montrer que la variable aléatoire $\sum_{1 \le j \le n} u_j \left(\mathbf{B}_{t_j} - \mathbf{B}_{t_{j-1}} \right)$ est centrée, a pour variance $\sum_{1 \le j \le n} u_j^2 \left(t_j - t_{j-1} \right)$, et est gaussienne.

En déduire que les variables $(\mathbf{B}_{t_j} - \mathbf{B}_{t_{j-1}}, \ 1 \leqslant j \leqslant n)$ sont indépendantes.

c. Montrer que E [B_1^4] = 3. En déduire que, pour tout $t \ge 0$, la suite

$$\left(\sum_{0 < k \leq n} \left(B_{\frac{k}{n}t} - B_{\frac{k-1}{n}t}\right)^2, n \geqslant 1\right) \text{ converge vers } t \text{ dans } L^2(\Omega, \mathcal{A}, P).$$

DEUXIÈME PARTIE

On suppose définies sur (Ω , \mathcal{H} , P) trois copies indépendantes X, Y et Z du processus B (i.e. X, Y, Z sont presque sûrement continus, ont même loi que B et les tribus $\sigma(X_t, t \ge 0)$, $\sigma(Y_t, t \ge 0)$ et $\sigma(Z_t, t \ge 0)$ sont indépendantes. U désigne le processus (à valeurs dans \mathbb{R}^3) (X, Y, Z).

Pour $t\geqslant 0,\, \mathcal{F}_t$ désigne la tribu $\sigma\left(\mathbf{U}_s\,,\, 0\leqslant s\leqslant t\,\right)$; $\mathcal{F}_\infty=\sigma\left(\mathbf{U}_s\,,\, s\geqslant 0\,\right)$.

Une variable T à valeurs dans $\overline{\mathbb{R}}_+$ est un temps d'arrêt si $\{\omega \mid T(\omega) \leq t\}$ est dans \mathcal{F}_t pour tout réel positif t.

$$\mathcal{F}_{\mathtt{T}} \; = \; \left\{ \; \mathsf{A} \; \in \; \mathcal{F}_{\scriptscriptstyle \infty} \; , \; \mathsf{A} \; \cap \; \left\{ \; \mathsf{T} \; \leqslant \; t \; \right\} \; \in \; \mathcal{F}_{\mathsf{t}} \qquad \forall \; t \; \geqslant \; 0 \; \right\}.$$

- 1º Soient S et T des temps d'arrêt.
 - a. Montrer que $\mathcal{F}_{\mathbf{S}}$ est une tribu et que \mathbf{S} est $\mathcal{F}_{\mathbf{S}}$ mesurable.
 - b. Si S est inférieur à T, montrer que $\mathfrak{F}_{\mathbf{S}}$ est contenue dans $\mathfrak{F}_{\mathbf{T}}$.
 - c. Pour $n \in \mathbb{N}$ $(n \ge 1)$, soit T_n la variable définie par :

$$T_n = (k+1) 2^{-n} \text{ sur } \{ k 2^{-n} \leqslant T < (k+1) 2^{-n} \}, T_n = + \infty \text{ sur } \{ T = + \infty \}.$$

Montrer que $(T_n, n \ge 1)$ est une suite de temps d'arrêt, décroissant vers T. Montrer que pour tout $A \in \mathcal{F}_{T_n}$ et tout $k \in \mathbb{N}$, $A \cap \left(T_n = \frac{k+1}{2^n} \right)$ appartient à $\mathcal{F}_{(k+1)2^{-n}}$.

- 2º a. Soit $r \ge 0$; montrer que le processus $t \longrightarrow U_{t+r} U_r$ est indépendant de la tribu \mathcal{F}_r et a même loi que U.
 - b. Soit T un temps d'arrêt; montrer que, conditionnellement à { T < + ∞ }, le processus $t \longrightarrow U_{\mathbf{T}_n + t} U_{\mathbf{T}_n}$ est indépendant de $\mathcal{F}_{\mathbf{T}_n}$ et a même loi que U. En déduire que, conditionnellement à { T < + ∞ }, le processus $t \longrightarrow U_{\mathbf{T}_n + t} U_{\mathbf{T}}$ est indépendant de $\mathcal{F}_{\mathbf{T}}$, de même loi que U.
 - c. Montrer que pour φ fonction borélienne bornée sur \mathbb{R}^3 , $t\geqslant 0$ et h>0, on a :

$$E \left[\varphi \left(U_{t+h} \right) \mid \mathfrak{F}_{t} \right] = \frac{1}{(2 \pi h)^{3/2}} \int_{\mathbb{R}^{3}} dv \, \varphi \left(v \right) \, \exp \, - \, \left(\frac{\| v - U_{t} \|^{2}}{2 \, h} \right)$$

où $||u|| = (x^2 + y^2 + z^2)^{1/2}$ est la norme euclidienne du vecteur u = (x, y, z) de \mathbb{R}^3 .

TROISIÈME PARTIE

UNIVERSITE de NANCY I

répartement de Mathématiques
BIBLIOTHEQUE

Q et G désignent les fonctions définies sur $\mathbb{R}_+^\star\,\times\,\mathbb{R}_+\,\times\,\mathbb{R}_+^\star$ par :

$$Q(h, a, r) = \sqrt{\frac{2}{\pi h}} \frac{r}{a} \operatorname{sh} \left(\frac{ar}{h}\right) \exp\left(-\frac{a^2 + r^2}{2h}\right) \qquad (a > 0)$$

$$Q(h, 0, r) = \sqrt{\frac{2}{\pi h^3}} r^2 \exp\left(-\frac{r^2}{2h}\right)$$

G
$$(p, a, r) = \frac{1}{\sqrt{2p}} \frac{r}{a} \left(\exp\left(-\sqrt{2p} \mid r - a \mid\right) - \exp\left(-\sqrt{2p} (r + a)\right) \right)$$
. $(a > 0)$
G $(p, 0, r) = 2 r \exp\left(-\sqrt{2p} r\right)$

On admettra l'égalité pour p > 0 et $b \ge 0$:

$$\sqrt{2p} \int_0^\infty \exp \left(-\left(pt + \frac{b^2}{2t}\right)\right) \frac{dt}{\sqrt{2\pi t}} = \exp \left(-b \sqrt{2p}\right).$$

On pourra aussi admettre le résultat suivant : soit f une fonction borélienne bornée sur \mathbb{R}_+ ; si $\int_0^\infty f(t) \exp(-pt) dt$ est nulle pour tout p > 0, alors f est nulle presque sûrement (pour la mesure de Lebesgue).

U étant le processus (à valeurs dans \mathbb{R}^3) défini dans la deuxième partie, si $u \in \mathbb{R}^3$, $t \in \mathbb{R}_+$, R^u_t est le réel $||u + U_t||$; pour simplifier l'écriture on remplacera R^0_t par R_t .

- 1º Soit f une fonction borélienne bornée sur \mathbb{R}_+ .
 - a. Soit w un vecteur non nul de \mathbb{R}^3 , h un réel (h > 0); montrer l'égalité :

$$\int_{\mathbb{R}^3} f(\|x\|) \exp\left(-\frac{\|x-w\|^2}{2h}\right) = \frac{dx}{(2\pi h)^{3/2}} = \int_0^\infty f(r) \, Q(h, \|w\|, r) \, dr.$$

(On pourra faire un changement de repère orthonormé tel que $\frac{w}{\|w\|}$ soit l'un des vecteurs de base, puis intégrer en coordonnées sphériques.)

b.Établir l'égalité suivante (
 $t\geqslant 0$, h>0) :

$$\mathrm{E}\left[f(\mathrm{R}_{t+h}^{u})\mid\mathcal{F}_{t}\right] = \int_{0}^{\infty} f\left(r\right) \,\mathrm{Q}\left(h\,,\,\mathrm{R}_{t}^{u}\,,\,r\right) \,dr \qquad \left(u\,\in\,\mathbb{R}^{3}\right).$$

Quelle est la loi de R_t?

c. Montrer que si p est strictement positif, on a :

$$\mathbf{E}\left[\int_{0}^{\infty} f\left(\mathbf{R}_{t+h}^{u}\right) \exp\left(-ph\right) dh \mid \widetilde{\mathfrak{F}}_{t}\right] = \int_{0}^{\infty} f\left(r\right) \mathbf{G}\left(p, \mathbf{R}_{t}^{u}, r\right) dr \qquad (u \in \mathbb{R}^{3}).$$

- 2º a. Soient $0 < t_1 < t_2 \ldots < t_n$ des réels et $u \in \mathbb{R}^s$; calculer la densité de la loi du vecteur aléatoire $(R^u_{t_1}, R^u_{t_2}, \ldots, R^u_{t_n})$. Montrer que les processus $t \longrightarrow R^u_t$ et $t \longrightarrow R^v_t$ ont la même loi si ||u|| = ||v||.
 - b. Soient en outre $t \ge 0$ et f_1, f_2, \ldots, f_n des fonctions boréliennes bornées sur \mathbb{R}_+ ; soit Φ la fonction définie pour $r \in \mathbb{R}_+$ par :

$$\Phi (r) = E \left[f_1 \left(\mathbf{R}_{t_1}^{r\alpha} \right) \dots f_n \left(\mathbf{R}_{t_n}^{r\alpha} \right) \right] \qquad (\alpha \in \mathbb{R}^3, \|\alpha\| = 1).$$

Montrer que Φ est borélienne et que :

3º Soient $u \in \mathbb{R}^3$ et a > 0; on abrégera dans cette question R^u_t par ρ_t .

On définit sur Ω une variable τ (à valeurs dans $\overline{\mathbb{R}}_+$) en posant :

$$\tau\left(\omega\right)=+\,\infty\,$$
 si, pour tout $t\geqslant0$, $ho_{t}\left(\omega\right)$ est différent de a ;

$$\tau(\omega) = \inf(t \ge 0, \ \rho_t(\omega) = a) \ \text{sinon}.$$

a. Montrer que, pour tout réel positif s, on a :

$$\left\{ \left. \left\{ \right. s \, < \, \tau \, \right\} \right. = \left. \begin{array}{c} \bigcup_{n \, \in \, \mathbb{N} \\ n \, \geqslant \, 1 \end{array} \right. \left. \left. \begin{array}{c} q \, \in \, \mathbb{Q} \\ q \, \leqslant \, s \end{array} \right. \left. \left. \left| \right. \left| \, \rho_q \, - \, a \, \right| \, \geqslant \, \frac{1}{n} \right. \right\}.$$

En déduire que τ est un temps d'arrêt.

b. Soient f une fonction borélienne bornée sur \mathbb{R}_+ et p > 0.

Montrer que, pour tout
$$s \geqslant 0$$
, $\int_0^s f(\rho_t) \exp(-pt) dt$ est \mathcal{F}_s - mesurable.

Montrer:

$$\int_0^{\tau} f(\rho_t) \exp(-pt) dt = \lim_{n \to \infty} \sum_{k \ge 0} 1 \left\{ \frac{k}{n} \le \tau < \frac{k+1}{n} \right\}$$

En déduire que $\int_0^{\tau} f(\rho_t) \exp(-pt) dt$ est \mathcal{F}_{τ} - mesurable. Établir en outre l'égalité :

$$\int_0^{\infty} f(\rho_t) \exp(-pt) dt$$

$$= \int_0^{\tau} f(\rho_t) \exp(-pt) dt + 1_{\{\tau < +\infty\}} \exp(-p\tau) \int_0^{\infty} f(\rho_{t+\tau}) \exp(-pt) dt.$$

c. Montrer que, conditionnellement à $\{\tau < +\infty\}$, le processus $t \longrightarrow \rho_{t+\tau}$ est indépendant de \mathfrak{F}_{τ} et a même loi que $\mathbb{R}^{a\,\alpha}$ dès que $\|\alpha\| = 1$. En déduire, pour f fonction borélienne bornée, l'égalité :

$$E\left[\int_{0}^{\infty} f(\rho_{t}) \exp(-pt) dt\right] \\
= E\left[\int_{0}^{\tau} f(\rho_{t}) \exp(-pt) dt\right] + E\left[1_{\{\tau < +\infty\}} \exp(-p\tau)\right] \int_{0}^{\infty} f(r) G(p, a, r) dr.$$

d. En utilisant les fonctions $f_{\scriptscriptstyle 1}=1_{\scriptscriptstyle]\,0\,,\,a\,[}$ ou $f_{\scriptscriptstyle 2}=1_{\scriptscriptstyle]\,a\,,\,+\,\infty\,[}$, établir :

$$E [1_{\{\tau < +\infty\}} \exp (-p\tau)] = \frac{a}{\|u\|} \exp (-\sqrt{2p} (\|u\| - a)) \quad \text{si} \quad \|u\| \ge a,$$

$$= \frac{a}{\|u\|} \frac{\sinh (\|u\| \sqrt{2p})}{\sinh (a\sqrt{2p})} \quad \text{si} \quad 0 < \|u\| < a,$$

$$= \frac{a\sqrt{2p}}{\sinh (a\sqrt{2p})} \quad \text{si} \quad 0 = \|u\|.$$

En déduire : $P[\tau < + \infty] = \inf \left(1, \frac{a}{\parallel u \parallel}\right)$. Montrer que l'ensemble $\{\exists t \ge 0, \rho_t = 0\}$ est \mathcal{F}_{∞} - mesurable et qu'il est de probabilité nulle lorsque $\parallel u \parallel$ est non nul.

e.~ On suppose $\parallel u \parallel ~>~ a$. Soit f borélienne bornée sur \mathbb{R}_+ ; montrer pour p>0 l'égalité :

$$E\left[\int_{0}^{\tau} f\left(\rho_{t}\right) \exp\left(-pt\right) dt\right]$$

$$= \frac{1}{\sqrt{2p}} \int_{a}^{\infty} \frac{r}{\parallel u \parallel} f\left(r\right) \left(\exp\left(-\sqrt{2p} \mid r - \parallel u \parallel \mid\right) - \exp\left(-\sqrt{2p} \left(\parallel u \parallel + r - 2 a\right)\right)\right) dr.$$

En déduire :

$$E\left[f\left(\rho_{h}\right) 1_{\{h < \tau\}}\right]$$

$$= \sqrt{\frac{2}{\pi h}} \int_{a}^{\infty} \frac{r}{\|u\|} \left(\text{sh} \frac{(r-a)(\|u\|-a)}{h} \right) \left(\exp - \frac{(r-a)^{2} + (\|u\|-a)^{2}}{2h} \right) f(r) dr$$

$$(h \text{ réel}, h > 0).$$

4º a. Soit pour n entier, $n \ge 1$, $A_n = \begin{cases} \exists t \ge 0, R_{\frac{1}{n}+t} = 0 \end{cases}$.

Montrer que A_n est \mathcal{F}_{∞} - mesurable ; calculer $P[A_n | R_{1/n}]$. En déduire que $\{\omega | t \longrightarrow U_t (\omega) \text{ ne retourne pas en } 0\}$ est un événement de probabilité 1.

b. Soient pour a et b réels strictement positifs :

$$au_a = \inf \ (t \geqslant 0 \ , \ R_t = a) \ \ (\inf \ \varnothing \ = + \ \infty \ \text{par convention}) \ ;$$

$$\sigma_b = \sup \ (t \geqslant 0 \ , \ R_t < b) \ .$$

Montrer que τ_a est presque sûrement fini ; $a \longrightarrow \tau_a$ est croissante et tend vers $+\infty$ avec a. Montrer que l'on a presque sûrement :

$$\{ \tau_a < \sigma_b \} = \{ \exists u \in \mathbb{Q}, u > 0, R_{u + \tau_a} < b \}.$$

En déduire :

$$P \left[\tau_a < \sigma_b\right] = \inf \left(1 \cdot \frac{b}{a}\right) \text{ et } P \left[\sigma_b < + \infty\right] = 1.$$

Montrer que R_t tend presque sûrement vers $+ \infty$ avec t.

5° Soient pour
$$t\geqslant 0$$
 et $h>0$, $J_t=\inf_{u\,\geqslant\,t}\,R_u\,,$ I_{t , $h}=\inf_{t\,\leqslant\,u\,\leqslant\,t+\,h}\,R_u\,.$

- a. Montrer que le processus J est presque sûrement continu et que $J_t = \inf (J_{t+h}, I_{t,h})$.
- $b. \ \ \text{Montrer que pour} \ t \geqslant 0 \,, \ b > 0 \,, \ \left\{ \, \mathbf{J}_t < b \, \right\} = \left\{ \, \exists \, \, \epsilon \in \mathbb{Q} \,, \ \, \epsilon \geqslant 0 \,, \ \, \mathbf{R}_{\epsilon \,+\,\, t} < b \, \right\}.$

En déduire les égalités :

$$\begin{split} & \text{P} \left[\left. \left[\left. J_t \right. \right> b \, \left| \, \mathcal{F}_t \right. \right] \, = \, \sup \left(0 \, , \, 1 \, - \, \frac{b}{R_t} \right) \, = \, \text{P} \left[\left. \left[J_t \right. > b \, \left| \, \mathcal{F}_t \right. \right] \, \left(t > 0 \right) \, ; \\ & \text{E} \left[\left. f \left(J_t \right) \, \left| \, \mathcal{F}_t \right. \right] \, = \, \frac{1}{R_t} \, \int_0^{R_t} \, f \left(j \right) \, dj \, \left(t > 0, \, f \, \text{bor\'elienne born\'ee} \right) \, ; \\ & \text{E} \left[\left. g \left(R_t \, , \, J_t \right) \, \left| \, \mathcal{F}_t \right. \right] \, = \, \frac{1}{R_t} \, \int_0^{R_t} \, g \left(R_t \, , j \right) \, dj \, \left(t \, > \, 0 \, , \, g \, \, \text{bor\'elienne born\'ee} \, \, \text{sur} \, \, \mathbb{R}_+^2 \right) \, . \end{split}$$

- c. Soient g borélienne bornée sur \mathbb{R}^2_+ et a > 0.
 - i) Démontrer l'égalité :

$$E[g(R_{t+h}, J_{t+h}, J_{t+h}) 1_{\{J_t > a\}} | \mathcal{F}_t] = E\left[\frac{1}{R_{t+h}} \int_a^{R_{t+h}} g(R_{t+h}, j) dj 1_{\{a < R_{t+h}, a < I_{t,h}\}} | \mathcal{F}_t\right]$$

ii) Soit $\tau_{t,a}=\inf$ (s $\geqslant 0$, $R_{t+s}\leqslant a$). Déduire de l'égalité :

$$\{\tau_{t,a} > h\} = \{a < I_{t,h}\}$$
 la relation :

E [g (R_{t+h} , J_{t+h}) $1_{\{a < J_t\}}$ | \mathcal{F}_t]

$$= 1_{\{a < R_t\}} \frac{1}{R_t} \sqrt{\frac{2}{\pi h}} \int_a^{\infty} \left(\operatorname{sh} \frac{(R_t - a) (r - a)}{h} \right) \left(\exp \left(- \frac{(r - a)^2 + (R_t - a)^2}{2 h} \right) \int_a^{r} g(r, j) dj dr$$

d. Montrer que pour f borélienne bornée sur $\mathbb R$ et a>0, on a :

$$\mathrm{E} \left[f \left(2 \; \mathrm{J}_{t \; + \; h} \; - \; \mathrm{R}_{t \; + \; h} \right) \; \mathbf{1}_{\left\{ \; a \; < \; \mathrm{J}_{t} \; \right\}} \; \middle| \; \mathfrak{F}_{t} \; \right]$$

$$= 1_{\{a < R_t\}} \frac{1}{R_t} \int_a^{R_t} \frac{1}{\sqrt{2 \pi h}} \left(\int_{R}^{x} f(x) \exp \left(-\frac{(x-2y+R_t)^2}{2h} \right) dx \right) dy.$$

Notons $\beta_t = 2 \; J_t \; - \; R_t$ et \mathcal{H}_t la tribu engendrée par \mathcal{F}_t et J_t .

Montrer que:

$$\mathrm{E}\left[f\left(\beta_{t+h}\right)\mid \mathcal{B}\mathcal{C}_{t}\right] = \frac{1}{\sqrt{2\pi h}}\int_{\mathbb{R}}^{x} f\left(x\right) \exp\left(-\frac{(x-\beta_{t})^{2}}{2h}\right) dx.$$

Montrer enfin que \beta a même loi que B.