PROBABILITÉS ET STATISTIQUES

N.B. — Les troisième et quatrième parties sont indépendantes de la deuxième partie.

* *

DÉFINITIONS, NOTATIONS ET RAPPELS

1° Dans tout le problème, $\mathbb N$ désigne l'ensemble des entiers naturels, $\mathbb R$ l'ensemble des réels, $\mathbb R^+$ l'ensemble des réels négatifs ou nuls. Si a et b sont deux réels, on utilisera parfois la notation abrégée $a \wedge b$ pour désigner le minimum de a et de b.

2º Désignant par (Ω, \mathcal{A}, P) un espace probabilisé, on appelle variable aléatoire réelle (en abrégé v.a.r.) de loi μ une application de Ω dans \mathbb{R} , mesurable relativement à la tribu \mathcal{A} et à la tribu borélienne de \mathbb{R} , telle que la probabilité image de P par cette application soit la mesure μ sur \mathbb{R} .

On note $\mathbf{1}_{A}$ la fonction indicatrice d'un ensemble $A \in \mathcal{H}$, c'est-à-dire la v.a.r. qui vaut 1 sur A et 0 sur le complémentaire de A.

Si (X_1, \ldots, X_n) est une suite de n v.a.r., on note $\sigma(X_1, \ldots, X_n)$ la plus petite sous-tribu de \mathcal{A} rendant mesurables ces applications de Ω dans \mathbb{R} .

3° Si $\mathcal B$ est une sous-tribu de $\mathcal B$, le symbole $E\left(X\mid\mathcal B\right)$ désigne l'espérance conditionnelle de la v.a.r. intégrable X par rapport à la tribu $\mathcal B$, ou plutôt un représentant de cette espérance conditionnelle.

On rappelle l'inégalité de Jensen pour les espérances conditionnelles : si φ est une fonction convexe, si X est une v.a.r. intégrable telle que $\varphi(X)$ soit intégrable, alors

$$\varphi(E(X \mid \mathcal{B})) \leqslant E(\varphi(X) \mid \mathcal{B})$$
 p.s.

4º Si $(\mathcal{B}_n, n \ge 0)$ est une suite de sous-tribus de \mathcal{A} , croissante pour l'inclusion $(\mathcal{B}_n \subset \mathcal{B}_{n+1})$, et si $(X_n, n \ge 0)$ est une suite de v.a.r. intégrables, on dit que $(X_n, n \ge 0)$ est une martingale adaptée à $(\mathcal{B}_n, n \ge 0)$ si chaque X_n est un représentant de l'espérance conditionnelle $E(X_{n+1} \mid \mathcal{B}_n)$: on écrira simplement $X_n = E(X_{n+1} \mid \mathcal{B}_n)$ p.s. On pourra avoir en mémoire le théorème de convergence p.s. des martingales positives, mais son utilisation ne sera pas nécessaire.

Si T est une application de Ω dans $\mathbb{N} \cup \{+\infty\}$, on dira que T est un temps d'arrêt de la famille $(\mathcal{B}_n, n \ge 0)$ si pour tout $n \in \mathbb{N}$, $\{T = n\} \in \mathcal{B}_n$.

Première partie

Soit $(Z_n, n \ge 0)$ une martingale adaptée à une famille croissante $(\mathcal{B}_n, n \ge 0)$ de sous-tribus de \mathcal{A} .

1° a. Montrer que pour tout $p \ge 0$ et tout $n \ge 0$:

$$E(Z_{n+p} \mid \mathcal{B}_n) = Z_n$$
 p.s.

b. Si $(Z_n, n \ge 0)$ est positive et si on pose $Z = \lim_{k \to \infty} \inf Z_k$, montrer que pour tout $n \ge 0$:

$$E(\underline{Z} \mid \mathcal{B}_n) \leqslant Z_n$$
 p.s.

c. Si $(Z_n, n \ge 0)$ est positive et converge p.s. vers une v.a.r. Z_∞ , et si $E(Z_\infty) = E(Z_0)$, montrer que pout tout $n \ge 0$,

$$E(Z_{\infty} \mid \mathcal{B}_n) = Z_n$$
 p.s.

2° a. Soit T un temps d'arrêt de la famille (\mathcal{B}_n , $n \ge 0$).

Montrer que la suite $(Z_{n \land T}, n \geqslant 0)$ définie par

$$Z_{n \wedge T} = Z_n$$
 sur $\{T > n\}$
= Z_T sur $\{T^{y} \leq n\}$

est encore une martingale adaptée à la famille (\mathcal{B}_n , $n \ge 0$).

b. On pose pour b > 0

$$T_b = \inf \{ n \ge 0 : Z_n > b \}$$

= $+ \infty$ si $Z_n \le b$ pour tout $n \ge 0$.

Montrer que T_b est un temps d'arrêt de la famille (\mathcal{O}_n , $n \ge 0$).

c. Montrer que si $(Z_n, n \ge 0)$ est positive,

$$b P (T_b < + \infty) \leq E (Z_{T_b} \mathbf{1}_{\{T_b < + \infty\}}) \leq E (Z_0),$$

et en déduire que $Z^* = \sup_{n>0} Z_n$ est finie p.s.

DEUXIÈME PARTIE

Soit $(Y_k, k \ge 1)$ une suite de v.a.r. indépendantes équidistribuées de loi commune μ définie par $\mu(\{1\}) = \mu(\{-1\}) = 1/2$. On pose

$$X_0 = 0$$
 $\mathcal{B}_0 = (\Phi, \Omega)$
$$X_n = \sum_{k=1}^n Y_k \qquad \mathcal{B}_n = \sigma(Y_1, \ldots, Y_n) \qquad \text{pour } n \geqslant 1.$$

Si c et d sont deux entiers ≥ 1 , on pose

Le but de cette partie est d'obtenir la transformée de Laplace de la loi du temps d'atteinte U de la double barrière $\{c, -d\}$ par la promenade aléatoire $(X_n, n \ge 0)$.

1º Pour $0 \le \alpha < \frac{\pi}{2}$, montrer que la suite $(S_n^{\alpha}, n \ge 0)$ définie par

$$S_n^{\alpha} = (\cos \alpha)^{-n} \cos \left\{ \alpha \left(X_n - \frac{c-d}{2} \right) \right\}$$

est une martingale adaptée à $(\mathcal{B}_n, n \ge 0)$.

2º On suppose désormais $0 \leqslant \alpha < \frac{\pi}{c+d}$. Montrer :

a. Que $(S_{n \wedge U}^{\alpha}, n \ge 0)$ est une martingale positive adaptée à la famille $(\mathcal{O}_n, n \ge 0)$;

b. Que pour tout $n \ge 0$,

$$E\left((\cos\alpha)^{-(n\wedge U)}\right) \leq \frac{\cos\left\{\alpha\frac{c-d}{2}\right\}}{\cos\left\{\alpha\frac{c+d}{2}\right\}};$$

- c. Que $P(U < +\infty) = 1$;
- d. Que $(\cos \alpha)^{-U}$ est intégrable.
- 3° Calculer, toujours pour $0 \leqslant \alpha < \frac{\pi}{c+d}$, la valeur de E((cos α) σ).

TROISIÈME PARTIE

Soit $(Z_n, n \ge 0)$ une martingale positive adaptée à une famille croissante $(\mathcal{B}_n, n \ge 0)$ de sous-tribus de \mathcal{A} . On suppose que $Z_0 = 1$ et que la suite $(Z_n, n \ge 0)$ tend p.s. quand n tend vers $+\infty$ vers une v.a.r. Z_{∞} . On pose pour tout $k \ge 1$.

$$\alpha_k = \frac{Z_k}{Z_{k-1}} \qquad \text{sur } \{Z_{k-1} > 0\}$$

$$= 1 \qquad \text{sur } \{Z_{k-1} = 0\}$$

On suppose que $\alpha_k \operatorname{Log} \alpha_k$ est intégrable pour tout $k \geqslant 1$ (ici $0 \operatorname{Log} 0 = 0$) et on va introduire la condition

(c)
$$\mathbb{E}\left(\exp\left\{\sum_{k=1}^{\infty}\mathbb{E}\left(\alpha_{k}\operatorname{Log}\,\alpha_{k}\mid\mathcal{B}_{k-1}\right)\right\}\right)<+\infty$$

après lui avoir donné un sens grâce au résultat de la question 2°.

Le but de cette partie est de montrer que sous la condition (c), $E(Z_{\infty}) = 1$.

1° Montrer que pour tout $k \ge 1$,

$$\mathbf{1}_{\{Z_{k-1}=0\}} \leq \mathbf{1}_{\{Z_k=0\}}$$
 p.s.

 2° Montrer que pour tout $k \geqslant 1$,

$$E(\alpha_k \mid \mathcal{B}_{k-1}) = 1$$
 p.s.

puis que

$$E(\alpha_k \operatorname{Log} \alpha_k \mid \mathcal{B}_{k-1}) \geqslant 0$$
 p.s.

- 3° Soit $\lambda \in]0, 1[$.
 - a. Montrer que pout tout $k \ge 1$, $(\alpha_k)^{\lambda}$ est intégrable et

$$E((\alpha_k)^{\lambda} \mid \mathcal{B}_{k-1}) > 0$$
 p.s.

b. Soit P_k la probabilité définie sur (Ω, \mathcal{B}_k) par

$$\mathrm{P}_k(\mathrm{A}) \; = \; \mathrm{E} \left(\mathbf{1}_{\mathrm{A}} \; \alpha_k \right) \; , \qquad \; \mathrm{A} \in \mathcal{O}_k \; , \quad k \, \geqslant \, 1 \; . \label{eq:pk}$$

Montrer que les restrictions à \mathcal{O}_{k-1} de P et P_k ont mêmes ensembles négligeables. Si E_k désigne l'espérance relative à P_k , montrer que

$$E(\alpha_k \operatorname{Log} \alpha_k \mid \mathcal{B}_{k-1}) = E_k (\operatorname{Log} \alpha_k \mid \mathcal{B}_{k-1})$$
 p.s.

et que

$$E((\alpha_k)^{\lambda} \mid \mathcal{B}_{k-1}) = E_k((\alpha_k)^{\lambda-1} \mid \mathcal{B}_{k-1}) \qquad \text{p.s.}$$

c. En déduire que

$$\exp \left\{ (\lambda - 1) \, \operatorname{E} \left(\alpha_k \operatorname{Log} \alpha_k \mid \mathcal{B}_{k-1} \right) \right\} \leqslant \operatorname{E} \left((\alpha_k)^{\lambda} \mid \mathcal{B}_{k-1} \right) \qquad \text{p.s.}$$

 4° On considère pour $n \geqslant 1$

$$R_n = \sum_{k=1}^{n} E(\alpha_k \operatorname{Log} \alpha_k \mid \mathcal{B}_{k-1})$$

et on note

$$R_{\infty} = \lim_{n \to \infty} R_n$$
 p.s.

On suppose, comme on l'a annoncé au début de cette partie, qu'est vérifiée la condition

(c) $E(\exp R_{\infty}) < + \infty.$

Pour tout $\lambda \in]0, 1[$, on introduit la suite $(Y_n(\lambda), n \ge 0)$ définie par

$$Y_o(\lambda) = 1$$

$$Y_n(\lambda) = \prod_{k=1}^n \frac{(\alpha_k)^{\lambda}}{\mathbb{E}((\alpha_k)^{\lambda} | \mathcal{B}_{k-1})}$$
 p.s.

et on pose

$$\overline{\mathbf{Y}}(\lambda) = \limsup_{n \to \infty} \mathbf{Y}_n(\lambda)$$

- a. Montrer que $(Y_n(\lambda), n \ge 0)$ est une martingale positive adaptée à $(\mathcal{O}_n, n \ge 0)$.
- b. Montrer que pour tout $n \ge 1$,

$$Y_n(\lambda) \leq (Z_n)^{\lambda} \exp \{(1 - \lambda) R_n\}$$
 p.s.

c. Montrer que pour tout $B \in \mathcal{A}$ et tout $n \ge 1$,

$$E(\mathbf{1}_{B} Y_{n}(\lambda)) \leq (E(\mathbf{1}_{B} \exp R_{\infty}))^{1-\lambda}$$

- d. Montrer que $\forall \varepsilon > 0$, $E\left(\mathbf{1}_{\{Y_n(\lambda) \geq \overline{Y}(\lambda) + \varepsilon\}} Y_n(\lambda)\right)$ tend vers 0 lorsque n tend vers $+\infty$ et en déduire que $E\left(\overline{Y}(\lambda)\right) \geq 1$.
- e. Montrer que

$$E(\overline{Y}(\lambda)) \leq (E(Z_{\infty}))^{\lambda} (E(\exp R_{\infty}))^{1-\lambda}$$

f. En conclure que sous la condition (c), $E(Z_{\infty}) = 1$.

QUATRIÈME PARTIE

Soit $(Y_k, k \ge 1)$ une suite de v.a.r. indépendantes équidistribuées dont on désigne par μ la loi commune et soit $\phi: \mathbb{R} \to]-\infty$, $+\infty$] la fonction définie par

$$\varphi(u) = \text{Log } E(\exp \{uY_1\}) = \text{Log} \int e^{ux} d\mu(x).$$

On pose

$$X_0 = 0$$
 $\mathcal{B}_0 = (\Omega, \Phi)$
$$X_n = \sum_{k=1}^n Y_k \qquad \mathcal{B}_n = \sigma(Y_1, \ldots, Y_n) \qquad \text{pour } n \geq 1,$$

et pour un réel $a \ge 0$.

$$T = \inf \{ n \ge 1 : X_n \ge a \}$$

= $+\infty$ si $X_n < a$ pour tout $n \ge 1$.

Le but de cette partie est d'étudier en fonction des valeurs de ϕ la transformée de Laplace E (exp θ T) de la loi de T, et principalement de déterminer pour quelles valeurs de θ cette expression est finie.

- 1° Soit I l'ensemble des $u \in \mathbb{R}$ tels que $\varphi(u) < +\infty$.
 - a. Montrer que la fonction ϕ est convexe et en déduire que I est un intervalle contenant l'origine 0 .
 - b. Si μ n'est pas une mesure de Dirac, montrer que ϕ est strictement convexe sur I .

- c. Si $(u_n, n \ge 1)$ est une suite d'éléments de I tendant vers un nombre réel v, montrer que $\varphi(u_n) \to \varphi(v) \leqslant +\infty$ lorsque n tend vers $+\infty$.
- d. Montrer que pour tout réel u et tout $\varepsilon > 0$, il existe une constante c telle que pour tout $v \in]u \varepsilon$, $u + \varepsilon[$ et pour tout x réel, on ait

$$|x| \exp vx \le c (\exp \{(u+2\varepsilon)x\} + \exp \{(u-2\varepsilon)x\}).$$

En déduire que ϕ est dérivable à l'intérieur $\mathring{\mathbf{I}}$ de I, donner une expression de ϕ' et montrer que ϕ' est croissante et continue dans $\mathring{\mathbf{I}}$.

- e. Montrer que la suite $(Z_n^u = \exp \{ u X_n n \varphi(u) \}, n \ge 0)$, où $u \in I$, est une martingale positive adaptée à la famille $(\mathcal{B}_n, n \ge 0)$.
- f. Si μ n'est pas une mesure de Dirac, et si $u \in I \setminus \{0\}$, comparer Z_n^u et $(Z_n^{u/2})^2$, et en déduire que $(Z_n^u, n \ge 0)$ converge p.s. vers 0 lorsque n tend vers $+\infty$.

2º On suppose dans tout ce paragraphe que

$$\int x^{-} d\mu(x) < \int x^{+} d\mu(x) \leq + \infty,$$

où $x^+ = \max(x, 0), x^- = -\min(x, 0).$

- a. Montrer que P (T < $+\infty$) = 1 et que E ($\mathbb{Z}_{\mathbb{T}}^{u}$) \leq 1 pour tout $u \in \mathbb{I}$.
- b. Soit ψ la fonction définie sur $\mathring{\mathbf{I}}$ par :

$$\psi(u) = u \varphi'(u) - \varphi(u).$$

Montrer à l'aide du paragraphe III.4° que l'on a $E(Z_T^u)=1$ dès que $E(\exp\{\psi(u)T\})<+\infty$.

- c. Montrer que $\varphi(u) \in [0, +\infty]$ pour $u \ge 0$.
- d. Pour tout c > 0, on considère la suite $(Y_k^c = \min(Y_k, c), k \ge 1)$; μ^c , ϕ^c , T^c , $Z_T^{u,c}$ désignent respectivement les valeurs de μ , ϕ , T, Z_T^u associées à cette suite $(Y_k^c, k \ge 1)$.

Montrer que si $u \in I \cap \mathbb{R}^-$, alors $\varphi^c(u) < +\infty$, que si c est choisi assez grand, alors $P(T^c < +\infty) = 1$, et que si ces deux conditions sont réalisées, alors

$$\mathrm{E}\left(\mathrm{Z}_{\mathrm{T}^{c}}^{u,c}\right) \geqslant \mathrm{exp}\left\{u\left(a+c\right)\right\} \mathrm{E}\left(\mathrm{exp}\left\{-\varphi^{c}\left(u\right)\mathrm{T}^{c}\right\}\right).$$

Montrer, toujours pour $u \in I \cap \mathbb{R}^-$, que $\varphi^c(u)$ converge vers $\varphi(u)$ lorsque c tend vers $+\infty$. En déduire par comparaison de T et T^c que :

$$E (\exp \theta T) < +\infty$$
 pour $\theta < -\inf \phi$,

où inf φ désigne la borne inférieure de φ (u) pour u dans I.

e. On suppose $\mu(\mathbb{R}^+) = 1$, $\mu(\{0\}) > 0$ et a > 0. On pose

$$\begin{split} \mathbf{T_o} &= \inf \; \left\{ \, n \, \geqslant \, 1 \, : \, \mathbf{X_n} \, > \, 0 \, \right\} \\ &= \, + \, \infty \quad \quad \text{si} \quad \mathbf{X_n} \, \leqslant \, 0 \qquad \quad \text{pour tout } n \, \geqslant \, 1 \, . \end{split}$$

Calculer pour tout $j \ge 1$, $P(T_0 = j)$. Montrer que $T_0 \le T$, que inf $\varphi = \text{Log } \mu(\{0\})$ et que $E(\exp \theta T) = +\infty \qquad \text{pour } \theta = -\inf \varphi.$

- f. On suppose μ (\mathbb{R}^+) < 1. Montrer que φ (u) tend vers $+\infty$ lorsque u tend vers $-\infty$ et que φ atteint sa borne inférieure pour une valeur $u_0 \leq 0$.
- g. On suppose que μ (\mathbb{R}^+) < 1 et qu'il existe c > 0 tel que μ (] $-\infty$, c]) = 1. Montrer que E (exp θ T) < $+\infty$ pour $\theta = -\inf \varphi$.
- h. On suppose que μ (\mathbb{R}^+) < 1 et qu'il existe un réel d < 0 tel que μ ([d, $+\infty$ [) = 1. Montrer que $\mathbb{R}^ \subseteq$ I et que s'il existait $\theta > -\varphi(u_0)$ tel que E ($\exp \theta T$) < $+\infty$, alors il existerait $u_1 < u_0$ tel que E ($\exp \{\psi(u_1) T\}$) < $+\infty$; comparant les valeurs de E ($\mathbb{Z}_T^{u_1}$) et E ($\mathbb{Z}_T^{u_0}$), en déduire que

$$E (exp \theta T) = +\infty \qquad pour \theta > - \inf \phi.$$

i. On suppose
$$\mu(\mathbb{R}^+)$$
 < 1. Montrer que

$$E (\exp \theta T) = +\infty$$
 pour $\theta > -\inf \varphi$.

j. Au vu des questions précédentes, pour quelles valeurs de θ peut-on affirmer que

$$E (exp \theta T) < +\infty$$

- si μ est la loi gaussienne de moyenne m > 0 et de variance $\sigma^2 > 0$?
- si μ est la loi de densité $\frac{p^{\alpha}}{\Gamma(\alpha)}e^{-p(x+1)}(x+1)^{\alpha-1}$ sur]-1, $+\infty$ [, avec $\alpha>p>0$?

3º On suppose désormais que les valeurs prises par les v.a.r. $(Y_k, k \ge 1)$ sont des entiers relatifs inférieurs ou égaux à 1, que $\mu(\{1\}) > 0$ et que le seuil a est un entier strictement positif.

a. Montrer que
$$X_T = a sur \{T < +\infty\}$$
.

b. Montrer que
$$\mathbb{R}^+ \subset I$$
 et que φ (u) tend vers $+\infty$ lorsque u tend vers $+\infty$.

c. Soit $u^* = \max \{ u \ge 0 : \varphi(u) = 0 \}$. Montrer que la martingale $(Z_{n \land T}^u, n \ge 0)$ est bornée pour tout $u \ge u^*$, puis que

$$P(T < +\infty) = e^{-au^*}.$$

d. On suppose

$$\sum_{k=1}^{\infty} k \, \mu \, (\{-k\}) \, < \, \mu \, (\{1\}) \, .$$

Montrer que si $u \in \mathring{\mathbf{I}} \cap \mathbb{R}^-$ et vérifie $\varphi'(u) \ge 0$, alors on a $\mathrm{E}(Z^u_{\mathrm{T}}) = 1$. En déduire la valeur de E (exp θ T) pour toutes les valeurs réelles de θ pour lesquelles cette quantité est finie.

e. Calculer P (T $< + \infty$) dans les deux cas suivants :

•
$$\mu(\{1-k\}) = p(1-p)^k \text{ pour } k \in \mathbb{N}, \text{ avec } 0$$

•
$$\mu(\{1-k\}) = e^{-\lambda} \frac{\lambda^k}{k!}$$
 pour $k \in \mathbb{N}$, avec $\lambda = \frac{e}{e-1}$.

f. Calculer E (exp θ T) dans les trois cas suivants :

•
$$\mu(\{1\})$$
 = $\mu(\{-1\}) = \frac{1}{2}$;

•
$$\mu(\{1\})$$
 = $\mu(\{0\}) = \frac{1}{2}$;

•
$$\mu(\{1-k\}) = p(1-p)^k$$
 pour $k \in \mathbb{N}$, avec $\frac{1}{2} .$