S	ES	ST	ON	\mathbf{DE}	200	0.4
IJ		\mathbf{L}	.	ינע	200	174

concours extern	\mathbf{e}		
de recrutement	$\mathbf{d}\mathbf{e}$	professeurs	agrégés

section: mathématiques

composition de mathématiques générales

durée: 6 heures

Les calculatrices électroniques de poche sont autorisées, conformément à la réglementation.

La qualité de la rédaction et de la présentation, la clarté et la précision des raisonnements constitueront un élément important pour l'appréciation des copies.

Préambule

Le but de ce problème est d'étudier le nombre de solutions modulo un entier naturel q d'une congruence quadratique matricielle

$${}^t XSX \equiv T \pmod{q}$$

où S et T sont des matrices symétriques données à coefficients entiers, de tailles respectives $m \times m$ et $n \times n$, q est un entier strictement positif et l'inconnue X est une matrice d'entiers de taille $m \times n$, tX désignant sa transposée.

Soit R un anneau commutatif; dans ce préambule, on note 1_R son élément unité, mais on permet d'écrire 1 dans la rédaction. On note R^{\times} le groupe des éléments inversibles de R.

Étant donnés deux entiers m et n strictement positifs, on note $M_{m,n}(R)$ l'ensemble des matrices à m lignes et n colonnes à coefficients dans R.

Pour tout entier n strictement positif, on note $[1,n] = \{i \in \mathbb{Z} \mid 1 \leqslant i \leqslant n\}$; pour simplifier, on note $M_n(R)$, au lieu de $M_{n,n}(R)$, l'anneau des matrices carrées de taille $n \times n$ à coefficients dans R. Le déterminant d'une matrice carrée X à coefficients dans R est défini par la formule habituelle et noté det A. On rappelle qu'une matrice de $M_n(R)$ est inversible si et seulement si son déterminant est dans l'ensemble R^{\times} des éléments inversibles de R. On note $GL_n(R)$ le groupe des éléments de $M_n(R)$ de déterminant dans le groupe R^{\times} .

On note 1_n la matrice unité de $M_n(R)$. On note $S_n(R)$ l'ensemble des matrices X de $M_n(R)$ symétriques, c'est-à-dire telles que ${}^tX = X$.

A. Solutions modulo un nombre premier impair

Dans cette partie A, on fixe un nombre premier **impair** p et on considère deux matrices symétriques S et T, avec $S \in M_m(\mathbb{Z}/p\mathbb{Z})$ et $T \in M_n(\mathbb{Z}/p\mathbb{Z})$, de déterminants respectifs s et t non nuls. L'élément de la i-ème ligne et j-ème colonne de S (resp. T) est noté $s_{i,j}$ (resp. $t_{i,j}$). On introduit l'ensemble $\mathcal{A}_p(S,T) = \{X \in M_{m,n}(\mathbb{Z}/p\mathbb{Z}) \mid {}^tXSX = T\}$ et on note $A_p(S,T)$ son cardinal.

A.I Un cas particulier

Dans cette section **A.I**, on prend m=2 et n=1. Soit s et t deux éléments non nuls de $\mathbb{Z}/p\mathbb{Z}$, $T=\begin{pmatrix} t \end{pmatrix}$ et $S=\begin{pmatrix} 1 & 0 \\ 0 & s \end{pmatrix}$. La matrice T, de taille 1×1 , est identifiée à t; ainsi $A_p(S,t)$ est le nombre de couples (x,y) dans $\mathbb{Z}/p\mathbb{Z}\times\mathbb{Z}/p\mathbb{Z}$ tels que $x^2+sy^2=t$.

- 1) Supposons que -s soit un carré dans $\mathbb{Z}/p\mathbb{Z}$. Calculer $A_p(S,t)$.
- 2) On suppose dans toute la suite de cette section A.I que -s n'est pas un carré dans $\mathbb{Z}/p\mathbb{Z}$.
- **2.a.** Montrer que le polynôme $X^2 + s$ est irréductible sur $\mathbb{Z}/p\mathbb{Z}$. Soit K un corps de rupture. Quel est le cardinal de K?
- **2.b.** Soit $F: K \to K$, $z \mapsto z^p$. Montrer que F est un automorphisme involutif de corps $(F \circ F = Id_K)$ et déterminer ses points fixes.

- **2.c.** Soit α une racine de $X^2 + s$ dans K. Montrer que $F(\alpha) = -\alpha$.
- 3) Soit $N: K^{\times} \to K^{\times}, \ z \mapsto z^{p+1}$.
 - **3.a.** Montrer que N est un morphisme de groupes d'image contenue dans $(\mathbb{Z}/p\mathbb{Z})^{\times}$.
 - **3.b.** Déterminer le cardinal du noyau et de l'image de N.
 - **3.c.** Calculer $N(x+y\alpha)$ pour $x,y\in\mathbb{Z}/p\mathbb{Z}$ non tous deux nuls.
- **4)** Calculer $A_p(S,t)$.

A.II Préliminaires

Dans cette section **A.II**, m est un entier strictement positif et V un espace vectoriel de dimension finie m sur le corps $\mathbb{Z}/p\mathbb{Z}$.

- 1) Soit $b: V \times V \to \mathbb{Z}/p\mathbb{Z}$ une forme bilinéaire symétrique sur V.
 - **1.a.** Démontrer que si b(x,x) est nul pour tout x dans V, alors la forme bilinéaire b est nulle.
- **1.b.** Démontrer que V possède une base (e_1, \ldots, e_m) orthogonale pour b, c'est-à-dire telle que pour tous i et j distincts dans [1,m], $b(e_i,e_j)=0$.
- **1.c.** En déduire qu'il existe une matrice diagonale $D \in M_m(\mathbb{Z}/p\mathbb{Z})$ et une matrice inversible $P \in GL_m(\mathbb{Z}/p\mathbb{Z})$ telles que $S = {}^tPDP$.
- 2) Dans cette question 2, on prend $V = M_{m,1}(\mathbb{Z}/p\mathbb{Z})$ et on considère la forme bilinéaire b définie pour X et Y dans V par $b(X,Y) = {}^t X S Y$.

Montrer que pour tout n entier strictement positif et tout T élément de $S_n(\mathbb{Z}/p\mathbb{Z})$, $A_p(S,T)$ est le nombre de n-uplets (v_1, \ldots, v_n) d'éléments de V vérifiant $b(v_i, v_j) = t_{i,j}$ pour tous i et j dans [1,n].

3) Vérifier que pour toutes matrices P de $GL_m(\mathbb{Z}/p\mathbb{Z})$ et Q de $GL_n(\mathbb{Z}/p\mathbb{Z})$, on a

$$A_p(S,T) = A_p(^t P S P, ^t Q T Q).$$

- 4) Soit ϕ la fonction indicatrice d'Euler qui à un entier r strictement positif associe le nombre d'entiers de [1,r] premiers à r.
- **4.a.** Montrer que pour tout entier r strictement positif, $\sum_{d|r} \phi(d) = r$, la somme étant étendue à tous les entiers strictement positifs d diviseurs de r.
- **4.b.** Soit K un corps fini commutatif à q éléments. Démontrer que pour tout entier strictement positif d diviseur de q-1, l'ensemble des éléments de K^{\times} d'ordre divisant d est de cardinal au plus d.
- **4.c.** En déduire que pour tout entier strictement positif d diviseur de q-1, K^{\times} possède 0 ou $\phi(d)$ éléments d'ordre exactement d.
 - **4.d.** En déduire que K^{\times} est cyclique.

A.III Le cas n=1

Soit n=1; on a alors $T=t\in\mathbb{Z}/p\mathbb{Z}$ et $2st\neq 0$ où l'on rappelle que $s=\det S$.

Soit $\omega = \exp\left(\frac{2\mathrm{i}\pi}{p}\right)$ une racine primitive p-ième de l'unité (on a $\omega \in \mathbb{C}^{\times}$).

Pour $\alpha \in \mathbb{Z}$, le nombre complexe ω^{α} ne dépend que de la classe a de α modulo p; on le note ω^a : on admettra que l'on définit ainsi un morphisme $a \mapsto \omega^a$ du groupe additif $\mathbb{Z}/p\mathbb{Z}$ dans le groupe multiplicatif \mathbb{C}^{\times} .

Pour
$$a \in (\mathbb{Z}/p\mathbb{Z})^{\times}$$
, on pose $\left(\frac{a}{p}\right) = 1$ s'il existe $b \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ tel que $a = b^2$, et $\left(\frac{a}{p}\right) = -1$ sinon. Ces notations seront utilisées dans toute la suite de la partie \mathbf{A} .

1.a. Montrer qu'il y a dans $(\mathbb{Z}/p\mathbb{Z})^{\times}$ autant de carrés que de non carrés et que $a \mapsto \left(\frac{a}{p}\right)$ est un morphisme de groupes multiplicatifs $(\mathbb{Z}/p\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$.

1.b. Pour
$$b \in \mathbb{Z}/p\mathbb{Z}$$
 calculer $\sum_{a \in \mathbb{Z}/p\mathbb{Z}} \omega^{ab}$.

1.c. Pour
$$c \in (\mathbb{Z}/p\mathbb{Z})^{\times}$$
, on pose $G_c = \sum_{a \in \mathbb{Z}/p\mathbb{Z}} \omega^{ca^2}$ et $H_c = \sum_{a \in (\mathbb{Z}/p\mathbb{Z})^{\times}} \left(\frac{a}{p}\right) \omega^{ca}$.

Démontrer qu'on a
$$G_c = H_c = \left(\frac{c}{p}\right) \cdot G_1$$
.

Dans ce qui suit, G_1 sera noté G.

2.a. Montrer que
$$pA_p(S,t) = \sum_{a,X} \omega^{a({}^tXSX-t)}$$
 où a parcourt $\mathbb{Z}/p\mathbb{Z}$ et X parcourt $M_{m,1}(\mathbb{Z}/p\mathbb{Z})$.

2.b. Soit D une matrice diagonale inversible élément de $M_m(\mathbb{Z}/p\mathbb{Z})$, de termes diagonaux s_1, \ldots, s_m . Montrer que

$$pA_p(D,t) = p^m + \left(\frac{\det D}{p}\right) \cdot G^m \cdot \sum_{a \in (\mathbb{Z}/p\mathbb{Z})^{\times}} \left(\frac{a}{p}\right)^m \omega^{-at}$$

2.c. Montrer que
$$G^2 = \left(\frac{-1}{p}\right) \cdot p$$
.

Indication : On pourra appliquer à un cas particulier le résultat démontré dans la question précédente.

3) Pour
$$a \in (\mathbb{Z}/p\mathbb{Z})^{\times}$$
 et k entier naturel on pose $\varepsilon_k^{(p)}(a) = \left(\frac{(-1)^{k/2}a}{p}\right)$ si k est pair et $\varepsilon_k^{(p)}(a) = 0$ sinon.

Cette notation sera utilisée dans la suite du problème.

3.a. Montrer qu'on a l'égalité :

$$A_p(S,t) = \begin{cases} p^{m-1} (1 - \varepsilon_m^{(p)}(s) p^{-m/2}) & \text{si } m \text{ est pair} \\ p^{m-1} (1 + \varepsilon_{m-1}^{(p)}(st) p^{(1-m)/2}) & \text{si } m \text{ est impair} \end{cases}$$

4

3.b. Préciser pour quelles valeurs de m, s et t la quantité $A_p(S,t)$ s'annule.

A.IV Le cas n quelconque

Dans cette section, on suppose $m \ge n$.

1) Soit $n \ge 2$; soit $T \in S_n(\mathbb{Z}/p\mathbb{Z})$ de déterminant $t \in (\mathbb{Z}/p\mathbb{Z})^{\times}$. Supposons $T = \begin{pmatrix} \delta & 0 \\ 0 & T_1 \end{pmatrix}$ avec $\delta \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ et $T_1 \in S_{n-1}(\mathbb{Z}/p\mathbb{Z})$ inversible de déterminant t_1 .

1.a. Montrer que l'application qui à $X \in \mathcal{A}_p(S,T)$ fait correspondre sa première colonne induit une application γ de $\mathcal{A}_p(S,T)$ dans $\mathcal{A}_p(S,\delta)$.

1.b. Soit $C_1 \in \mathcal{A}_p(S, \delta)$. Montrer qu'il existe une matrice symétrique inversible S_1 dans $M_{m-1}(\mathbb{Z}/p\mathbb{Z})$ dont le déterminant s_1 vérifie $\left(\frac{s_1}{p}\right) = \left(\frac{s}{p}\right)$, et telle que $\gamma^{-1}(C_1)$ soit de cardinal $A_p(S_1, T_1)$.

Indication : On pourra utiliser l'interprétation de la question 2 du Préliminaire en introduisant l'orthogonal W du vecteur C_1 pour la forme b de matrice S dans la base canonique de $V = M_{m,1}(\mathbb{Z}/p\mathbb{Z})$.

2.a. En procédant par récurrence sur n, montrer que

$$A_p(S,T) = p^{mn-n(n+1)/2} \psi_{p,m,n}(s,t) \prod_{m-n<2k < m} \left(1 - \frac{1}{p^{2k}}\right)$$

οù

$$\psi_{p,m,n}(s,t) = (1 - \varepsilon_m^{(p)}(s)p^{-m/2})(1 + \varepsilon_{m-n}^{(p)}(st)p^{(n-m)/2})$$

2.b. À quelles conditions $A_p(S,T)$ est-il nul?

B. Matrices à coefficients dans l'anneau $\mathbb{Z}/q\mathbb{Z}$

Soit q un entier naturel strictement positif; on note π_q le morphisme canonique d'anneaux $\mathbb{Z} \to \mathbb{Z}/q\mathbb{Z}$ et, si q' est un entier naturel strictement positif multiple de q, $\pi_{q,q'}$ le morphisme canonique d'anneaux $\mathbb{Z}/q'\mathbb{Z} \to \mathbb{Z}/q\mathbb{Z}$. On pourra remarquer l'égalité $\pi_{q,q'} \circ \pi_{q'} = \pi_q$. Si n et m sont des entiers strictement positifs et M un élément de $M_{m,n}(\mathbb{Z})$, on note aussi $\pi_q(M)$ la matrice élément de $M_{m,n}(\mathbb{Z}/q\mathbb{Z})$ dont les coefficients sont les images par π_q des coefficients de M; on définit de manière analogue $\pi_{q,q'}(M)$ si q' est un multiple de q et si M est élément de $M_{m,n}(\mathbb{Z}/q'\mathbb{Z})$. On considérera comme évidentes les propriétés des applications π_q et $\pi_{q,q'}$ relativement à la somme des matrices, au produit d'une matrice par un scalaire, au produit des matrices, à la transposition des matrices et au déterminant.

On dira que les matrices M_1 et M_2 de même taille et à coefficients dans \mathbb{Z} , resp. $\mathbb{Z}/q'\mathbb{Z}$, sont congrues modulo q si $\pi_q(M_1) = \pi_q(M_2)$, resp. si q divise q' et $\pi_{q,q'}(M_1) = \pi_{q,q'}(M_2)$; cette relation sera notée $M_1 \equiv M_2 \pmod{q}$.

Dans ce qui suit, m et n représentent deux entiers strictement positifs tels que $m \ge n$ et S et T deux matrices symétriques, $S \in S_m(\mathbb{Z})$ et $T \in S_n(\mathbb{Z})$, de déterminants respectifs s et t non nuls. Pour tout entier naturel impair q premier avec st, on pose

$$\mathcal{A}_q(S,T) = \{ X \in M_{m,n}(\mathbb{Z}/q\mathbb{Z}) \mid {}^t X \pi_q(S) X = \pi_q(T) \}$$

et on note $A_q(S,T)$ le cardinal de cet ensemble. Pour $a \in \mathbb{Z}$ et p premier impair, on pose $\chi_a(p) = 0$ si p divise a, $\chi_a(p) = 1$ si a est un carré non nul modulo p, et sinon $\chi_a(p) = -1$.

- 1) Soit q un entier strictement positif quelconque.
 - **1.a.** On suppose $q = q_1q_2$, où q_1 et q_2 sont premiers entre eux.

Montrer que l'application $X \mapsto (\pi_{q_1,q}(X), \pi_{q_2,q}(X))$ établit une bijection entre

$$M_{m,n}(\mathbb{Z}/q\mathbb{Z})$$
 et $M_{m,n}(\mathbb{Z}/q_1\mathbb{Z}) \times M_{m,n}(\mathbb{Z}/q_2\mathbb{Z})$.

1.b. Montrer que la bijection trouvée au 1.b induit une bijection entre

$$\mathcal{A}_q(S,T)$$
 et $\mathcal{A}_{q_1}(S,T) \times \mathcal{A}_{q_2}(S,T)$.

1.c. On suppose $q = p_1^{\alpha_1} \dots p_r^{\alpha_r}$ où p_1, \dots, p_r sont des nombres premiers impairs deux à deux distincts et $\alpha_1, \dots, \alpha_r$ sont des entiers strictement positifs. Pour tout i dans [1,r], on pose $q_i = p_i^{\alpha_i}$. Démontrer que

$$A_q(S,T) = \prod_{i=1}^r A_{q_i}(S,T)$$

- 2) Dans cette question p désigne un nombre premier impair premier avec st et α est un entier naturel ≥ 1 . On considère une matrice $X \in M_{m,n}(\mathbb{Z})$ telle que $\pi_{p^{\alpha}}(X) \in \mathcal{A}_{p^{\alpha}}(S,T)$ et on pose $\widetilde{X} = \pi_p(X)$ et $\widetilde{S} = \pi_p(S)$.
- **2.a.** Montrer que l'application $u: H \mapsto {}^t\widetilde{X}\widetilde{S}H$, est une application $\mathbb{Z}/p\mathbb{Z}$ -linéaire surjective $M_{m,n}(\mathbb{Z}/p\mathbb{Z})$ dans $M_n(\mathbb{Z}/p\mathbb{Z})$.
- **2.b.** Montrer que l'application $v: H \mapsto {}^t\widetilde{X}\widetilde{S}H + {}^tH\widetilde{S}\widetilde{X}$ est une application $\mathbb{Z}/p\mathbb{Z}$ -linéaire surjective de $M_{m,n}(\mathbb{Z}/p\mathbb{Z})$ dans $S_n(\mathbb{Z}/p\mathbb{Z})$.
- **2.c.** Montrer que le cardinal du noyau de l'application linéaire de la question précédente est $p^{mn-\frac{n(n+1)}{2}}$.
- 3) Montrer qu'il existe une matrice U dans $M_{m,n}(\mathbb{Z})$ telle que la matrice $Y = X + p^{\alpha}U$ de $M_{m,n}(\mathbb{Z})$ satisfasse $\pi_{p^{\alpha+1}}(Y) \in \mathcal{A}_{p^{\alpha+1}}(S,T)$.
- 4) Déduire de ce qui précède que l'application

$$\pi_{p^{\alpha},p^{\alpha+1}}: M_{m,n}(\mathbb{Z}/p^{\alpha+1}\mathbb{Z}) \to M_{m,n}(\mathbb{Z}/p^{\alpha}\mathbb{Z})$$

induit une application $r_{\alpha}: \mathcal{A}_{p^{\alpha+1}}(S,T) \to \mathcal{A}_{p^{\alpha}}(S,T)$ surjective, et que les cardinaux des images réciproques par r_{α} des singletons valent tous $p^{mn-\frac{n(n+1)}{2}}$.

5) Déterminer $A_{p^{\alpha}}(S,T)$ pour tout $\alpha \geqslant 1$.

- 6) Soit q un entier naturel impair ≥ 1 premier avec st.
 - **6.a.** Exprimer $A_q(S,T)$ en fonction de m, n, s, t, q et des facteurs premiers de q.
 - **6.b.** À quelle condition $A_q(S,T)$ est-il nul?
- 7) On note \mathcal{P} l'ensemble des nombres premiers ne divisant pas 2st; pour tout entier h strictement positif, on pose $\mathcal{P}_h = \mathcal{P} \cap [1,h]$ et on note q_h le produit des éléments de \mathcal{P}_h . On fixe $m \ge 1$ et $n \ge 1$ de sorte que m > n + 2.
 - 7.a. Montrer que la suite $\left(A_{q_h}(S,T)\Big/q_h^{mn-\frac{n(n+1)}{2}}\right)_{h\geqslant 1}$ a une limite finie strictement positive.

7.b. Soit
$$Q_h = \prod_{p \in \mathcal{P}_h} p^h = q_h^h$$
.

Montrer que la suite $\left(A_{Q_h}(S,T)\Big/Q_h^{mn-\frac{n(n+1)}{2}}\right)_{h\geqslant 1}$ a une limite finie strictement positive.