Agrégation de mathématiques

Composition d'analyse 1984

NOTATIONS.

Dans tout le problème, Ω désignera un ouvert borné connexe non vide de \mathbb{R}^2 , dont la frontière $\partial\Omega$ est une courbe C^{∞} par morceaux. On notera $x=(x_1,x_2)$ les points de \mathbb{R}^2 . On rappelle que l'opérateur de Laplace (ou laplacien)

$$\Delta = \frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2}$$

s'écrit en coordonnées polaires (r, θ) , et pour $r \neq 0$, sous la forme

$$\Delta = \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2}.$$

On note $L^1_{loc}(\Omega)$ l'ensemble des classes de fonctions mesurables, à valeurs réelles, qui sont intégrables (pour la mesure de Lebesgue dx) dans tout ouvert Ω' relativement compact dans $\Omega(\overline{\Omega}' \subset \Omega)$; on a $L^2(\Omega) \subset L^1_{loc}(\Omega)$.

On désigne par $C_0^k(\Omega)$, $0 \le k \le \infty$, l'ensemble des fonctions réelles définies sur Ω , de classe C^k et à support compact dans Ω . On note supp (f) le support de la fonction f. On rappelle que $C_0^k(\Omega)$ est dense dans $L^1(\Omega)$ pour $0 \le k \le \infty$. On utilisera de même les notations $L_{loc}^1(\mathbb{R}^2)$, $C_0^k(\mathbb{R}^2)$,...

 $0 \le k \le \infty$. On utilisera de même les notations $L^1_{loc}(\mathbb{R}^2)$, $C^k_0(\mathbb{R}^2)$,... Soit a une constante réelle; on dit qu'une fonction u de $L^1_{loc}(\Omega)$ est une solution faible de l'équation $(\Delta + a)u = 0$ dans Ω (ou encore qu'elle vérifie $(\Delta + a)u = 0$ au sens faible dans Ω) si, pour toute fonction φ de $C^\infty_0(\Omega)$, on a

$$\int_{\Omega} u(x)(\Delta \varphi(x) + a\varphi(x)) dx = 0.$$

Si u est dans $C^2(\Omega)$, et si $\Delta u(x) + au(x) = 0$ pour tout x de Ω , on dira que u est une solution classique de l'équation $(\Delta + a)u = 0$ dans Ω . On notera $\nabla u(x)$ le vecteur (gradient de u)

$$\nabla u(x) = \left(\frac{\partial u}{\partial x_1}(x), \frac{\partial u}{\partial x_2}(x)\right).$$

On pose aussi $||x|| = (x_1^2 + x_2^2)^{1/2}$, $B(x_0, R) = \{x \in \mathbb{R}^2, ||x - x_0|| < R\}$,

$$S(x_0, R) = \{x \in \mathbb{R}^2, \|x - x_0\| = R\} \quad \text{et} \quad \overline{B}(x_0, R) = \{x \in \mathbb{R}^2, \|x - x_0\| \le R\} \quad (\text{où } R > 0).$$

On rappelle enfin les notations suivantes:

- pour
$$\alpha = (\alpha_1, \alpha_2) \in \mathbb{N}^2$$
, $|\alpha| = \alpha_1 + \alpha_2$, $\alpha_1! = \alpha_1! \alpha_2!$,
- pour tout $x \in \mathbb{R}^2$, $x^{\alpha} = x_1^{\alpha_1} x_2^{\alpha_2}$ et $\partial^{\alpha} u(x) = \left(\frac{\partial}{\partial x_1}\right)^{\alpha_1} \left(\frac{\partial}{\partial x_2}\right)^{\alpha_2} u(x)$.

BUT DU PROBLÈME.

Ce problème étudie certaines propriétés des solutions (quand elles existent) de l'équation $(\Delta + a)u = 0$ dans Ω . Dans la première partie, on étudie les propriétés de régularité dans Ω des solutions faibles éventuelles de $(\Delta + a)u = 0$. Dans la deuxième partie, on étudie la géométrie locale de l'ensemble $u^{-1}(0)$ où u est une solution faible d'une équation $(\Delta + a)u = 0$. La troisième partie est consacrée à la recherche de couples $(a, u) \in \mathbb{R} \times H$ tels que u soit une solution faible de l'équation $(\Delta + a)u = 0$ ($u \neq 0$), où u est un certain espace de fonctions. La quatrième partie est une partie de synthèse où l'on étudie des propriétés géométriques semi-globales de l'ensemble $u^{-1}(0)$, où u est une solution faible d'une équation $(\Delta + a)u = 0$.

Nota. — Les trois premières parties du problème peuvent être traitées indépendamment les unes des autres (quitte à admettre certains résultats).

1° a) N

complexe z

(1)

où ' désigne

1° b) N

réel, noté j

1° c) S

est C[∞] dan

2º Soit

2° a) N

est définie

2° b) Í

3° Soit

3° a) 1

3° b) 1

-

Soit U le Montr séparément

 $z_2 \mapsto E_k(z)$

 $\{z_1 \in \mathbb{C} : (z_1) \in \mathbb{C} : (z_2) \in \mathbb{C} : (z_2)$

de Lebesgi

4° a)

4º Pou

4° b)

(On pourra

5° Le faible de l'é dans Ω. So telle que β

fonctions (

5° a)

 \mathbb{R}^2 ; montr

5° b)

On choisit

PREMIÈRE PARTIE.

1° a) Montrer que la somme J(z) de la série $\sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{4^n (n!)^2}$ est une fonction entière de la variable complexe z et qu'elle vérifie l'équation différentielle

(1)
$$zf''(z) + f'(z) + zf(z) = 0$$

où ' désigne la dérivation par rapport à la variable complexe z.

1° b) Montrer que la fonction J(s), obtenue par restriction à \mathbb{R} de la fonction du 1° a), a un et un seul zéro réel, noté j_0 , entre 0 et $\sqrt{8}$ (on pourra situer ce zéro par rapport à 2).

1° c) Soit R > 0. Montrer que la fonction de \mathbb{R}^2 dans \mathbb{R} définie par

$$e(x) = e(x_1, x_2) = J\left(\frac{j_0}{R}\sqrt{x_1^2 + x_2^2}\right)$$

est C^{∞} dans \mathbb{R}^2 et qu'elle vérifie $\left(\Delta + \frac{j_0^2}{\mathbb{R}^2}\right)e(x) = 0$, e(x) = 0 si $x \in S(O, \mathbb{R})$ et e(x) > 0 si $x \in B(O, \mathbb{R})$.

2° Soit $\mathbb{C}_0 = \{z \in \mathbb{C}, z \notin \mathbb{R}_-\}$. On désigne par Log (z) la détermination principale du logarithme dans \mathbb{C}_0 .

2º a) Montrer que la fonction

$$Y(z) = \text{Log}(z)J(z) - \sum_{n=1}^{\infty} \left(1 + \frac{1}{2} + \cdots + \frac{1}{n}\right) (-1)^n \frac{z^{2n}}{4^n (n!)^2}$$

est définie et holomorphe sur \mathbb{C}_0 et qu'elle y vérifie l'équation différentielle (1) du 1° a).

2° b) Établir que $\lim z Y(z) = 0$ et $\lim z Y'(z) = 1$, où les limites sont prises pour $z \in \mathbb{C}_0$, z tendant vers 0.

 3° Soit k > 0 un réel fixé. On pose

$$E_k(x) = E_k(x_1, x_2) = \frac{1}{2\pi} Y(k\sqrt{x_1^2 + x_2^2}).$$

3° a) Montrer que E_k est une fonction C^{∞} dans $\mathbb{R}^2\setminus\{0\}$ et qu'elle y vérifie $(\Delta + k^2)E_k(x) = 0$.

3º b) Pour $z = (z_1, z_2) \in \mathbb{C}^2$, on pose $z = (x_1 + iy_1, x_2 + iy_2)$,

$$\Re(z) = (x_1^2 + x_2^2)^{1/2}, \qquad \Im(z) = (y_1^2 + y_2^2)^{1/2} \quad \text{et} \quad |z|^2 = |z_1|^2 + |z_2|^2 = \Re(z)^2 + \Im(z)^2.$$

Soit U le voisinage de $\mathbb{R}^2 \setminus \{0\}$ dans \mathbb{C}^2 défini par $U = \{z \in \mathbb{C}^2 : \mathscr{I}(z) < \mathscr{R}(z)\}$.

Montrer que E_k peut se prolonger en une fonction, encore notée E_k , de U dans $\mathbb C$ qui soit continue sur U et séparément holomorphe en chacune des variables z_1 , z_2 sur U [c'est-à-dire: pour z_1 (resp. z_2) fixé, la fonction $z_2 \mapsto E_k(z_1, z_2)$ (resp. $z_1 \mapsto E_k(z_1, z_2)$ est holomorphe dans l'ouvert $\{z_2 \in \mathbb C: (z_1, z_2) \in \mathbb U\}$. (resp. $\{z_1 \in \mathbb C: (z_1, z_2) \in \mathbb U\}$].

4° Pour ψ dans $L^1_{loc}(\mathbb{R}^2)$ et ϕ dans $C^\infty_0(\mathbb{R}^2)$, on pose $(\psi * \phi)(x) = \int_{\mathbb{R}^2} \psi(y)\phi(x-y) \, dy$ où dy est la mesure de Lebesgue dans \mathbb{R}^2 .

4° a) Montrer que E_k est dans $L^1_{loc}(\mathbb{R}^2)$ et que pour toute φ dans $C_0^{\infty}(\mathbb{R}^2)$, $E_k * \varphi$ est C^{∞} dans \mathbb{R}^2 .

4° b) Montrer que pour toute φ de $C_0^{\infty}(\mathbb{R}^2)$ et pour tout x de \mathbb{R}^2 , on a

$$(\Delta + k^2)(E_k * \varphi)(x) = (E_k * (\Delta + k^2)\varphi)(x) = \varphi(x).$$

(On pourra se ramener au cas x = 0; intégrer sur un domaine $|x| \ge \varepsilon$, passer en polaires et intégrer par parties.)

5° Le nombre k étant fixé, on pose, pour simplifier, $E = E_k$ et $P = \Delta + k^2$. Soit u dans $L^1_{loc}(\Omega)$ une solution faible de l'équation Pu = 0 dans Ω . On se donne x_0 dans Ω et R > 0 tels que le disque $\overline{B}(x_0, 2R)$ soit contenu dans Ω . Soit α dans $C_0^{\infty}(\Omega)$ identiquement égale à 1 sur $B(x_0, 2R)$. Soit β dans $C_0^{\infty}(B(0, 2\epsilon))$ une fonction paire telle que β soit identiquement égale à 1 sur $B(0, \epsilon)$ où l'on choisit ϵ tel que $2\epsilon < R$ [on admettra l'existence de telles fonctions α et β]. On pose enfin $F_1 = \beta E$ et $F_2 = (1 - \beta)E$.

5° a) Montrer que F_1 est dans $C^\infty(\mathbb{R}^2\setminus\{0\})$ et dans $L^1_{loc}(\mathbb{R}^2)$, et qu'elle est nulle en dehors d'un compact de \mathbb{R}^2 ; montrer que F_2 est dans $C^\infty(\mathbb{R}^2)$

5° b) Montrer que pour toute φ de $C_0^{\infty}(\Omega)$, avec supp $\varphi \subset B(x_0, \mathbb{R})$, on a

$$\int_{\Omega} u(x)\varphi(x) dx = \int_{\Omega} \alpha(x)u(x)P(F_1 * \varphi)(x) dx + \int_{\Omega} \alpha(x)u(x)P(F_2 * \varphi)(x) dx.$$

On choisit maintenant φ comme ci-dessus, c'est-à-dire $\varphi \in C_0^\infty(\mathbb{B}(x_0, \mathbb{R}))$.

5° c) Montrer que supp $(F_1 * \varphi) \subset B(x_0, 2R)$ et que

$$\int_{\Omega} \alpha(x)u(x)P(F_1 * \varphi)(x) dx = 0.$$

5° d) Montrer que $\int_{\Omega} u(x)\varphi(x) dx = \int_{\Omega} [(\alpha u) * PF_2](x)\varphi(x) dx$; en déduire que u est dans $C^{\infty}(B(x_0, R))$. En conclure que toute solution faible u de Pu = 0 dans Ω est C^{∞} dans Ω (c'est-à-dire u est égale presque partout à une fonction C^{∞} encore notée u), et que Pu = 0 au sens classique.

6° On reprend les notations du 5°. On se propose de démontrer que u est analytique en la variable (x_1, x_2) dans Ω , c'est-à-dire pour tout $x_0 = (x_1^0, x_2^0)$ de Ω , il existe R > 0 tel que si $|x_1 - x_1^0| < R$ et $|x_2 - x_2^0| < R$ alors,

$$u(x_1, x_2) = \sum_{p, q \ge 0} a_{pq} (x_1 - x_1^0)^p (x_2 - x_2^0)^q.$$

6° a) On pose $v = P(\alpha u)$. Pour $x \in B(x_0, R)$, montrer que

$$u(x) = \int_{\Omega} E(x - y)v(y) dy$$

et en déduire que l'on a alors

$$u(x) = \int_{\mathbb{R}^2 \backslash B(x_0, 2\mathbb{R})} E(x - y)v(y) dy$$

pour tout $x \in B(x_0, R)$.

6° b) Avec les notations du 3° b), et en se ramenant au cas $x_0 = 0$, montrer que la formule

$$u(z) = \int_{|y| \ge 2R} E(z - y)v(y) dy,$$

prolonge à l'ouvert V de \mathbb{C}^2 , défini par $V = \{z \in \mathbb{C}^2 : \Re(z) < R \text{ et } \mathcal{I}(z) < R \}$, la fonction u(x) en une fonction, encore notée u, continue sur V et séparément holomorphe en (z_1, z_2) dans V.

6° c) Toujours avec l'hypothèse $x_0 = 0$, montrer qu'il existe des nombres r_j , R_j , j = 1,2 tels que pour $|z_j| < r_i < R_j$ on ait

$$u(z_1 z_2) = \left(\frac{1}{2i\pi}\right)^2 \int_{|\zeta_1| = r_1} \int_{|\zeta_2| = r_2} \frac{u(\zeta_1, \zeta_2)}{(\zeta_1 - z_1)(\zeta_2 - z_2)} d\zeta_1 d\zeta_2$$

et que

$$u(z_1, z_2) = \sum_{p, q \ge 0} a_{p,q} z_1^p z_2^q.$$

En conclure qu'une solution faible u de l'équation Pu = 0 dans Ω y est analytique.

DEUXIÈME PARTIE.

Dans toute cette partie, λ est un réel positif ou nul et $u \in L^1_{loc}(\Omega)$ est une solution faible de $(\Delta + \lambda)u = 0$ dans Ω , c'est-à-dire pour toute φ de $C_0^\infty(\Omega)$, on a

$$\int_{\Omega} u(x)(\Delta \varphi(x) + \lambda \varphi(x)) dx = 0.$$

On dit qu'une fonction C^{∞} v s'annule à l'ordre k, $0 \le k \le +\infty$ en x_0 si toutes les dérivées d'ordre inférieur ou égal à k de v s'annulent en x_0 et si au moins une dérivée de v d'ordre (k+1) ne s'annule pas en x_0 . Dans cette partie, on utilise les résultats de régularité établis dans la première partie (I.5° d) et I.6° c).

1° a) Montrer que la fonction u ne peut pas s'annuler à l'ordre infini en un point x_0 de Ω sans être identiquement nulle.

1° b) Montrer que si la fonction u s'annule à l'ordre (k-1) en $x_0 \in \Omega$, et si on pose

$$u_k(x) = \sum_{|\alpha|=k} \partial^{\alpha} u(x_0) \frac{(x-x_0)^{\alpha}}{\alpha!}$$

(premier terme homogène non nul du développement de Taylor en x_0) alors $\Delta u_k = 0$ dans \mathbb{R}^2 . On suppose maintenant que u s'annule à l'ordre (k-1) en $x_0 \in \Omega$, $k \ge 1$. Agrégation

2° a constante

2° b

au voisii

2° (

u(x) = 1

3°

Mo droites

où les c

difféom

ii) que l'oi

Montre

g₁, ... ou..., o

 $x_2 = x$

C-, uo

Or réelles, pour u

où dx O comple

complé réel (H E° l'er

> O contin

contin compa E 2° a) Montrer, en utilisant le fait que le polynôme u_k est une fonction harmonique dans \mathbb{R}^2 , qu'il existe une constante complexe ζ telle que l'on ait

$$u_k(x_1, x_2) = \text{Re}\left[\zeta(z - z_0)^k\right]$$
 où $z = x_1 + ix_2, z_0 = x_1^0 + ix_2^0$.

2º b) En déduire l'existence de constantes strictement positives K₁ et K₂ telles que

$$|u(x)| \le K_1 ||x - x_0||^k$$
 et $||\nabla u(x)|| \ge K_2 ||x - x_0||^{k-1}$

au voisinage de x_0 , où

$$\nabla u(x) = \left(\frac{\partial u}{\partial x_1}(x), \frac{\partial u}{\partial x_2}(x)\right) \quad \text{et} \quad \|(x_1, x_2)\| = (x_1^2 + x_2^2)^{1/2}.$$

2° c) Montrer que les points x tels que u(x) = 0 et $\nabla u(x) = 0$ sont isolés dans Ω .

3° Soit $x_0 \in \Omega$ un point où $u(x_0) = 0$ et soit (k-1) l'ordre d'annulation de u en x_0 . On écrit $u(x) = u_k(x) + v(x)$ avec les notations du 1° b).

3° a) Montrer, en se ramenant au cas $x_0 = 0$ et en choisissant bien les coordonnées, que l'on peut écrire :

$$u_k(x_1, x_2) = (x_2 - \alpha_1 x_1)(x_2 - \alpha_2 x_1) \dots (x_2 - \alpha_k x_1)$$

où les constantes $\alpha_1, \ldots, \alpha_k$ sont réelles, distinctes.

Montrer que les k droites ainsi obtenues forment un système équiangulaire (c'est-à-dire l'angle de deux droites consécutives est constant et égal à π/k).

3° b) (i) Montrer que l'application $\varphi: (x_1, t) \mapsto (x_1, x_2)$ avec $x_2 = tx_1$ est C^{∞} sur \mathbb{R}^2 et que c'est un difféomorphisme du demi-plan $\{x_1 > 0\}$ (resp. $\{x_1 < 0\}$) sur lui-même.

ii) Montrer qu'il existe un voisinage de 0, de la forme $D = \{|x_1| < R, |tx_1| < R\}$ et une fonction $f(x_1, t)$, que l'on cherchera comme somme d'une série entière sur D, tels que

$$u \circ \varphi(x_1, t) = x_1^k f(x_1, t).$$

Montrer que $f(0, \alpha_j) = 0$ et $\frac{\partial f}{\partial t}(0, \alpha_j) \neq 0$ pour j = 1, ..., k. En déduire qu'il existe $\varepsilon > 0$ et des fonctions $g_1, ..., g_k$, C^{∞} sur $]-\varepsilon, \varepsilon[$, telles que pour $|x_1| < \varepsilon$, $f(x_1, t) = 0$ soit équivalent à $t = g_1(x_1)$, ou $t = g_2(x_1)$, ou..., ou $t = g_k(x_1)$.

(iii) Montrer que dans $0 < x_1 < \varepsilon$ (resp. $-\varepsilon < x_1 < 0$), on a $u(x_1, x_2) = 0$ si, et seulement si, $x_2 = x_1 g_1(x_1)$ ou... ou $x_2 = x_1 g_k(x_1)$. En déduire que $u^{-1}(0)$ est constitué, près de 0, de k branches de courbes C^1 , dont les tangentes en O forment un système équiangulaire.

3° c) Montrer que si $u(x_0) = 0$, alors u change nécessairement de signe au voisinage de x_0 .

Troisième partie.

On rappelle que Ω est un ouvert borné connexe de \mathbb{R}^2 . Sur l'espace $U(\Omega) = C_0^{\infty}(\Omega)$ des fonctions à valeurs réelles, C^{∞} , à support compact dans Ω , on introduit les deux produits suivants, ainsi que les normes associées : pour $u, v \in U(\Omega)$,

$$(u, v)_0 = \int_{\Omega} u(x)v(x) dx \quad \text{et} \quad ||u||_0 = (u, u)_0^{1/2}$$

$$(u, v)_1 = \int_{\Omega} u(x)v(x) dx + \int_{\Omega} \nabla u(x) \cdot \nabla v(x) dx \quad \text{et} \quad ||u||_1 = (u, u)_1^{1/2}$$

où dx est la mesure de Lebesgue et où $\nabla u(x) \cdot \nabla v(x)$ désigne le produit scalaire des deux vecteurs $\nabla u(x)$ et $\nabla v(x)$.

On rappelle que $L(\Omega) = L^2(\Omega)$ est le complété de $U(\Omega)$ pour la norme $\|.\|_0$. On désignera par $H(\Omega)$ le complété de $U(\Omega)$, dans $L(\Omega)$, pour la norme $\|.\|_1$. On désignera par i l'inclusion continue de l'espace de Hilbert réel $(H(\Omega), (\bullet, \bullet)_1)$ dans l'espace de Hilbert réel $(L(\Omega), (\bullet, \bullet)_0)$. Étant donné un espace vectoriel E, on désignera par E^{\bullet} l'ensemble $E^{\bullet} = E \setminus \{0_E\}$.

Pour $u \in H(\Omega)$, on pose $Q(u) = ||u||_1^2 - ||u||_0^2$ et on introduit, pour $u \in H^{\bullet}(\Omega)$, le quotient

$$R(u) = R_{\Omega}(u) = \frac{Q(u)}{\|u\|_{\Omega}^2}$$

On admettra sans démonstration le résultat suivant : l'inclusion $i: H(\Omega) \mapsto L(\Omega)$ est une application linéaire continue et compacte, c'est-à-dire l'image par i d'une partie bornée de $H(\Omega)$ pour la norme $\|.\|_1$ est relativement compacte dans $L(\Omega)$ pour la norme $\|.\|_0$.

Enfin, on notera pour simplifier U pour $U(\Omega)$,... quand aucune confusion ne sera à craindre.

1° a) Montrer que les bornes inférieures inf $\{R(u), u \in U^*\}$ et inf $\{R(u), u \in H^*\}$ existent et sont égales; on note λ_1 leur valeur commune.

1° b) Soit $\{u_n\}$ une suite faiblement convergente dans H. Montrer que la suite $\{i(u_n)\}$ de L est faiblement convergente dans L.

1° c) Montrer l'existence d'une suite $\{u_n\}$ de H° telle que $\|u_n\|_1^2 \le \overline{\lambda}_1 + 1 + \frac{1}{n}$. En déduire qu'il existe un élément u de H° tel que pour tout φ de H on ait

$$(u, \varphi)_1^2 \leq (\bar{\lambda}_1 + 1)||\varphi||_1^2$$

1° d) Montrer que u vérifie $R(u) = \overline{\lambda}_1$.

1° e) Montrer que $\{u \in H^{\circ}: R(u) = \overline{\lambda}_1\} \cup \{0\} = E_1$ est un \mathbb{R} -espace vectoriel de dimension finie m_1 .

2º Montrer, en utilisant les méthodes du 1º, que l'on peut construire trois suites:

$$\overline{\lambda}_1 < \overline{\lambda}_2 < \overline{\lambda}_3 < \dots$$
, avec $\overline{\lambda}_i$ nombre réel positif ou nul, E_1, E_2, E_3, \dots , avec E_i \mathbb{R} -sous-espace vectoriel de dimension finie de L , m_1, m_2, m_3, \dots , avec $m_i = \dim E_i$,

avec en outre les deux propriétés suivantes :

(i) pour $i \neq j$, E_i et E_j sont orthogonaux dans $(L, (\bullet, \bullet)_0)$;

(ii) pour tout $u \in E_i$, pour tout $\varphi \in H$, on a $q(u, \varphi) = \overline{\lambda}_i(u, \varphi)_0$ où $q(u, v) = (u, v)_1 - (u, v)_0$ pour $u, v \in H$.

Dans la suite du problème, on écrira la suite $\{\lambda_i, m_i\}$ sous la forme d'une seule suite de nombres réels positifs ou nuls $\{\lambda_i\}$, $\lambda_1 \leq \lambda_2 \leq \lambda_3 \ldots$, obtenue en répétant m_i fois chaque λ_i ; ainsi, si $m_1 = 1$, $m_2 = 2$ et $m_3 = 3$, on écrira $(\lambda_1, 1)$, $(\lambda_2, 2)$, $(\lambda_3, 3)$... sous la forme

$$\lambda_1\leqslant\lambda_2\leqslant\lambda_3\leqslant\lambda_4\leqslant\lambda_5\leqslant\lambda_6\;\dots\qquad\text{avec}\qquad \lambda_1=\overline{\lambda}_1\,,\;\lambda_2=\lambda_3=\overline{\lambda}_2\,,\;\lambda_4=\lambda_5=\lambda_6=\overline{\lambda}_3\,.$$

On dit que la suite $\{\lambda_i\}$ est la suite des valeurs propres (avec multiplicités) du laplacien Δ dans $H(\Omega)$ [la terminologie sera justifiée au 3° c)]. On appellera $\lambda_i(\lambda_i(\Omega)$ si on veut spécifier le domaine Ω) la $i^{\text{ième}}$ valeur propre de Δ dans $H(\Omega)$. L'espace propre associé sera l'espace vectoriel sur \mathbb{R} , de dimension finie, noté $E_{\lambda i}$, des u de $H(\Omega)$ tels que $q(u, \varphi) = \lambda_i(u, \varphi)_0$ pour tout élément φ de $H(\Omega)$. Si dim $E_{\lambda i} = 1$, on dira que la valeur propre λ_i est simple.

3° a) Montrer qu'il existe une suite $\{e_i\}_{i \ge 1}$ d'éléments de H telle que :

(i) la famille $\{e_i\}$ est orthonormale dans, L;

(ii) $R(e_i) = \lambda_i, i \ge 1$.

3° b) Montrer que la suite $\{\lambda_i\}$ tend vers $+\infty$ et que la famille $\{e_i\}$ est complète dans L.

3° c) Montrer que pour $i \ge 1$, e_i est une solution faible de l'équation $(\Delta + \lambda_i)u = 0$ dans Ω .

4° Soit $H_k = \{u \in H : (u, e_i)_0 = 0, 1 \le i \le k\}$. Pour un sous-espace vectoriel L_k de dimension k de $H_k = L_k \setminus \{0\}$, on pose $\alpha(L_k) = \sup \{R(v), v \in L_k^{\bullet}\}$.

Enfin, on pose $\Lambda_k = \inf \{ \alpha(L_k) : L_k \text{ sous-espace vectoriel de dimension } k \text{ de H} \}.$

4° a) Montrer qu'étant donné $k \ge 1$, on peut trouver un vecteur non nul dans $L_k \cap H_{k-1}$. En déduire que $\Lambda_k \ge \lambda_k$.

4° b) Montrer que $\Lambda_k = \lambda_k$.

 4° c) Soit Ω_1 , Ω_2 deux ouverts bornés non vides de \mathbb{R}^2 , avec $\Omega_1 \subset \Omega_2$. Comparer les valeurs propres $\lambda_i(\Omega_1)$ et $\lambda_i(\Omega_2)$ pour $i \geqslant 1$ fixé.

5° Soit A un ensemble dénombrable. Soient $\{\mu_{\alpha}\}_{\alpha\in A}$ une famille de réels positifs ou nuls et $\{f_{\alpha}\}_{\alpha\in A}$ une famille d'éléments de H qui soit orthonormée complète dans L et telles que, pour tout $\alpha\in A$ et tout φ de H $q(f_{\alpha},\varphi)=\mu_{\alpha}(f_{\alpha},\varphi)_0$. Montrer que les ensembles $\{\mu_{\alpha}:\alpha\in A\}$ et $\{\lambda_k,k\geqslant 1\}$ sont égaux.

6° Dans cette question, on pourra utiliser sans démonstration le résultat suivant : si la frontière $\partial\Omega$ de Ω est C^{∞} par morceaux et si u, C^{1} au voisinage de Ω , vérifie u=0 sur $\partial\Omega$, alors $u\in H(\Omega)$.

Soit $\Omega_{a,b}$ le rectangle défini par $0 < x_1 < a$, $0 < x_2 < b$. On se propose de déterminer les valeurs propres du laplacien Δ dans $H(\Omega_{a,b})$. Pour cela, on cherche des couples $(u, \lambda) \in C^2(\bar{\Omega}_{a,b}) \times \mathbb{R}_+$, avec u nulle sur $\partial \Omega_{a,b}$, tels que

(*)
$$(\Delta + \lambda)u = 0 \quad \text{dans } \Omega_{a,b}.$$

6° a) Montrer que la famille $(e_{m,n}, \lambda_{m,n}), m, n \in \mathbb{N}^{\circ}$, définie par

$$\lambda_{m,n} = \pi^2 \left(\frac{m^2}{a^2} + \frac{n^2}{b^2} \right), \qquad e_{m,n}(x_1, x_2) = \sin \frac{\pi m x_1}{a} \sin \frac{\pi n x_2}{b}$$

vérifie (*).

Agrég

. (

des s

(

consi

 $E_{\lambda} \neq$

u ∈ E

On :

 $\mathbf{B}(x,$

stric $\mathbf{B}(x_0)$

toute

boul que

nom

long

γ ⊂

long

itiques

s; on

ment

te un

 n_1 .

∈ H. sitifs

3, on

!) [la opre $I(\Omega)$ i est

e H,

: que

 (Ω_1)

une le H

t C∞

s du

que

6° b) Montrer que la famille $\{e_{m,n}\}_{m,n\in\mathbb{N}^0}$ est complète dans $L^2(\Omega_{a,b})$ [on pourra se ramener par parité au cas des séries de Fourier].

 6° c) Déduire de ce qui précède les valeurs propres du laplacien Δ dans $H(\Omega_{a,b})$.

6° d) Toutes les valeurs propres de $\Omega_{1.1}$ sont-elles simples?

6° e) Donner un exemple de domaine du type $\Omega_{a,b}$ dont toutes les valeurs propres soient simples.

7° Montrer que l'on a $\lambda_1(\Omega) > 0$ pour tout ouvert borné Ω de \mathbb{R}^2 .

OUATRIÈME PARTIE.

On rappelle que Ω est un ouvert borné connexe de \mathbb{R}^2 . On reprend les notations qui suivent le III.2°.

Si λ est une valeur propre du laplacien Δ dans $H(\Omega)$, on note E_{λ} l'espace propre correspondant, que l'on peut considérer comme un sous-espace de $C^{\infty}(\Omega)$ à cause du II. Quand on écrira $u \in E_{\lambda}$, on entendra implicitement $E_{\lambda} \neq \{0\}$ (c'est-à-dire λ valeur propre de Δ) et $u \neq 0$.

Dans cette partie, on admettra sans démonstration les deux résultats suivants :

(i) Si $u \in E_{\lambda_1(\Omega)}$, alors u ne s'annule pas dans Ω ;

(ii) Si $u \in E_{\lambda}$ et si Ω' est une composante connexe de $\Omega \setminus u^{-1}(0)$, alors $\lambda_1(\Omega') = \lambda$.

1º Montrer, en utilisant le résultat (i) ci-dessus, que l'on a toujours dim $E_{\lambda_1(\Omega)}=1$ et que si $\lambda>\lambda_1(\Omega)$ et $u \in E_{\lambda}$, alors u s'annule dans Ω .

2° a) Montrer que pour tout déplacement τ de \mathbb{R}^2 , on a $\lambda_1(\tau(\Omega)) = \lambda_1(\Omega)$.

2° b) Montrer que pour tous x de \mathbb{R}^2 et R > 0, on a $\lambda_1(B(x, R)) = \frac{\lambda_1(B(0, 1))}{\mathbb{R}^2}$

On suppose maintenant que $\lambda > \lambda_1(\Omega)$.

3° Soit B(x, r) une boule contenue dans Ω . Montrer que si $r > \sqrt{\mu/\lambda}$, où $\mu = \lambda_1(B(0,1))$ et si $u \in E_\lambda$, alors $B(x,r) \cap u^{-1}(0) \neq \emptyset$.

Dans toute la suite du problème, on désigne par R un nombre réel strictement positif et par a un réel strictement positif petit par rapport à R, par exemple $\alpha = 10^{-10}$ R, tels qu'il existe un point x_0 de Ω pour lequel $B(x_0, R + \alpha) \subset \Omega$. Le point x_0 et les nombres R et α sont choisis une fois pour toutes.

4° a) Montrer qu'il existe un nombre $\lambda_0 > 0$ tel que si $\lambda \geqslant \lambda_0$ et si $u \in E_\lambda$, alors $B(x_0, R) \cap u^{-1}(0) \neq \emptyset$.

4° b) On pose désormais $r = 2\sqrt{\mu/\lambda}$ où $\mu = \lambda_1(B(0,1))$.

Montrer qu'il existe des valeurs propres λ de Δ dans $H(\Omega)$ telles que $\lambda \geqslant \lambda_0$, $2r < \alpha$. On choisit une fois pour toutes une telle valeur propre λ et une fonction $u \in E_{\lambda}^{\bullet}$. Montrer qu'il existe une famille $B(x_i, r/2)i = 1, 2, \ldots, l$ de boules deux à deux disjointes, contenues dans Ω , de centres $x_i \in u^{-1}(0) \cap B(x_0, R - r)$ pour $1 \le i \le l$ et telles

 $B(x_0, R-2r) \subset \bigcup_{i=1}^{l} B(x_i, 2r).$

4° c) Montrer qu'il existe une constante strictement positive C, qui ne dépend ni de Ω , ni de λ et telle que le nombre l de boules construites au 4° b) vérifie $l \ge \frac{C}{r^2} \operatorname{Vol}(B(x_0, R))$, où Vol désigne l'aire.

5° Montrer que $u^{-1}(0) \cap B(x_0, R)$ est réunion d'un ensemble discret fini et d'une famille d'arcs C^1 de \mathbb{R}^2 , de longueur totale finie.

6° Montrer qu'il ne peut pas exister de courbe fermée, C¹ par morceaux γ qui vérifie $\gamma \subset u^{-1}(0)$ et $\gamma \subset B(x_i, r/4)$ où $B(x_i, r/4)$ est une boule de rayon r/4 centrée en l'un des points x_i du 4° b).

7° Montrer qu'il existe une constante strictement positive D, qui ne dépend ni de Ω , ni de λ et telle que la longueur de $u^{-1}(0) \cap B(x_0, R)$ vérifie

$$\log (u^{-1}(0) \cap B(x_0, R)) \geqslant D \operatorname{Vol} (B(x_0, R)) \sqrt{\lambda}.$$

8° Peut-on remplacer l'ouvert $B(x_0, R)$ des questions précédentes par un ouvert ω plus général?