TEXTE DE L'EPREUVE D'ANALYSE

Durée: 6 heures

Il est rappelé aux candidats:

— qu'il sera tenu le plus grand compte, dans l'appréciation des copies, du soin apporté à la présentation, de la clarté et de la précision des démonstrations;

- qu'ils doivent respecter les notations fixées par l'énoncé.

On note C le plan complexe, z = x + iy un point quelconque de C (x = Re z et y = Im z sont réels), r le module de z et \bar{z} le conjugué x - iy de z.

Soit D le demi-plan y > 0 de C. Pour tout élément z de D, on pose $z = re^{i\theta}$ avec $0 < \theta < \pi$. Si F est une application de D dans C, on note, lorsqu'elles existent, $\frac{\partial F}{\partial x}$, $\frac{\partial F}{\partial y}$, $\frac{\partial^2 F}{\partial x^2}$... les dérivées partielles de

l'application $(x, y) \longrightarrow F(x + iy)$ et $\frac{\partial F}{\partial r}$, $\frac{\partial F}{\partial \theta}$, $\frac{\partial^2 F}{\partial \theta^2}$... les dérivées partielles de l'application $(r, \theta) \longrightarrow F(re^{i\theta})$.

Toutes les fonctions considérées dans ce texte sont supposées continues, sauf peut-être en un nombre fini de points. Si f est une application de $\mathbf R$ dans $\mathbf C$, on appellera $\mathfrak T$ la condition :

$$\int_{-\infty}^{+\infty} \frac{|f(t)|}{1+t^2} dt < +\infty .$$

Conformément à l'usage, C[X] désigne l'ensemble des polynômes à une indéterminée et à coefficients dans C. Un élément quelconque P de C[X] est noté $\sum p_j X^j$. Toutes les suites considérées dans le problème sont indexées dans N (ensemble des entiers naturels zéro compris).

I

Soit k l'application de $D \times R$ dans R définie par

$$k(z, t) = \frac{y}{(x-t)^2 + y^2} - \frac{1}{2i} \left(\frac{1}{t-z} - \frac{1}{t-\bar{z}} \right)$$

Si f est une application de \mathbf{R} dans \mathbf{C} , on note Kf l'application de \mathbf{D} dans \mathbf{C} définie par $Kf(z) = \frac{1}{\pi} \int_{-\pi}^{+\infty} k(z,t) f(t) dt$, lorsque cette intégrale est convergente pour tout z appartenant à \mathbf{D} .

a. Si f satisfait à \mathfrak{D} , démontrer que Kf existe, que Kf est indéfiniment continûment dérivable par rapport aux variables x et y et qu'on a :

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) \mathbf{K} f = 0.$$

b. L'application f vérifiant toujours \mathfrak{A} , on la suppose continue au point t_0 de \mathbf{R} ; démontrer qu'on a :

$$\lim_{\substack{z \to t_0 \\ y > 0}} Kf(z) = f(t_0) .$$

a. Soit F une fonction définie dans le demi-plan $y \ge 0$ de C et à valeurs dans C. On suppose que F est continue, que sa restriction à D est holomorphe et que F vérifie $\lim_{\substack{z \to -x \\ y \ge 0}} \frac{F(z)}{z} = 0$.

Démontrer que, pour tout z de D, on a

$$F(z) = \lim_{\Lambda + z \to z} \frac{1}{\pi} \int_{-\Lambda}^{\Lambda} k(z, t) F(t) dt .$$

b. Expliciter Kf pour $f(t) = \text{Log} | t - \alpha |$, où α est un complexe arbitraire (on pourra d'abord supposer Im $\alpha < 0$ et utiliser II α . en choisissant F de sorte, qu'on ait Re $F(t) = \text{Log} | t - \alpha |$ pour $t \in \mathbb{R}$).

Démontrer que, pour tout polynôme P à coefficients complexes et pour tout z non réel, on a :

(1)
$$\log |P(z)| \leq \frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{|y| \log |P(t)|}{(x-t)^2 + y^2} dt$$

c. Pour quelles valeurs du réel σ l'intégrale $\int_{-\infty}^{+\infty} \frac{\mid t\mid^{\sigma}}{1+t^2} dt$ est-elle convergente? Pour ces valeurs de σ expliciter Kf lorsque f est la fonction $t\longmapsto \mid t\mid^{\sigma}$.

Vérifier en particulier qu'on a, pour tout r strictement positif, :

(2)
$$\int_{-\infty}^{+\infty} \frac{r \mid t \mid^{\sigma}}{r^2 + t^2} dt = c(\sigma) r^{\sigma}$$

et donner la valeur de $c(\sigma)$. (On pourra dans le cas $0 < \sigma < 1$ appliquer II a. à la fonction $z \longmapsto \left(\frac{z}{i}\right)^{\sigma} = r^{\sigma} e^{i\sigma\left(\theta - \frac{\pi}{2}\right)}$).

III

a. On considère l'opérateur différentiel $\delta = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} = r \frac{\partial}{\partial r}$; $\delta \circ \delta$ est noté δ^2 . Soit f une application de \mathbf{R} dans \mathbf{C} vérifiant \mathfrak{P} . Pour tout réel λ strictement positif, on note f_{λ} l'application de \mathbf{R} dans \mathbf{C} définie par $f_{\lambda}(t) = f(\lambda t)$.

Démontrer qu'au sens de la convergence simple on a :

$$\delta^{2} K f = \lim_{\substack{\lambda \to 1 \\ \lambda \neq 1}} \left[\frac{1}{(\lambda - 1)^{2}} K \left(f_{\lambda} + f_{\frac{1}{\lambda}} - 2f \right) \right]$$

b. Exprimer l'opérateur différentiel $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$ en fonction de δ et $\frac{\partial}{\partial \theta}$.

Soit f une application de \mathbf{R} dans \mathbf{R} vérifiant \mathfrak{L} . On suppose que les deux fonctions $t \longrightarrow f(e^t)$ et $t \longrightarrow f(-e^t)$ sont convexes; démontrer qu'on a : $\frac{\partial^2 \mathbf{K} f}{\partial \theta^2} \leq 0$.

c. On suppose que f est une fonction paire vérifiant les hypothèses de III b. Démontrer que, pour tout r fixé strictement positif, la fonction $0 \longrightarrow Kf$ $(re^{i\theta})$ admet un maximum atteint pour $\theta = \frac{\pi}{2}$

IV

Dans cette question,

ullet W désigne une application paire de ${f R}$ dans [1, $+\infty$ [, vérifiant

$$\int_{-\infty}^{+\infty} \frac{\text{Log } \mathbf{W}(t)}{1+t^2} dt < + \infty$$

et telle que la fonction $t \mapsto \text{Log } \mathbf{W}(e^t)$ soit convexe; on pose pour tout r strictement positif $\mu(r) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \frac{r \text{Log } \mathbf{W}(t)}{r^2 + t^2} dt$ et,

pour tout élément j de \mathbb{N} , $M_j = \sup_{r>0} \frac{r^{j+\frac{1}{2}}}{e^{\mu(r)}}$.

 \bullet P = $\Sigma p_j X^j$ est un élément de $\mathbb{C}[X]$ satisfaisant à

$$\int_{-\infty}^{+\infty} |P(t)|^2 (W(t))^{-1} dt \leq 1.$$

a. Prouver que, pour tout réel u et tout réel strictement positif v, on a :

$$uv \leq e^{u-1} + v \operatorname{Log} v$$

b. Démontrer l'existence d'un réel C indépendant de P et W tel que pour tout z non réel on ait

$$|P(z)| \leq C |y|^{-\frac{1}{2}e^{\mu(\tau)}}$$

On utilisera l'égalité

$$\begin{aligned} \text{KLog} \left| \mathbf{P} \right| \quad & (z) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} k\left(z,t\right) \operatorname{Log} \left| \left(\mathbf{P}\left(t\right) \right)^{2} \left(\mathbf{W}\left(t\right) \right)^{-1} \right| dt \\ & + \frac{1}{2} \operatorname{KLog} \mathbf{W} \quad & (z) \end{aligned}$$

et on appliquera les résultats des questions II et III ainsi que l'inégalité IVa., où il est suggéré de remplacer u par Log $|{}^{\iota}(P(t))^2(W(t))^{-1}|$.

c. Déduire de IVb. l'existence d'un réel H, indépendant de P et W, tel que, pour tout j, on ait : $|p_j| \le \frac{H}{M_j}$.

V

On désigne toujours par W une application satisfaisant aux hypothèses de IV. On suppose en outre que, pour tout élément j de N, on a :

$$\lim_{t \to +\infty} \frac{t^j}{W(t)} = 0 \quad .$$

Les notations de IV sont conservées.

- a. Démontrer qu'il existe une suite (P_n) de polynômes $P_n = \sum p_{n,j} X^j$ satisfaisant aux conditions :
 - (i) P_n est de degré n

(ii)
$$\int_{-\infty}^{+\infty} P_m(t) P_n(t) (\mathbf{W}(t))^{-1} dt = \delta_{mn} = \begin{cases} 0 & \text{si} & m \neq n \\ 1 & \text{si} & m = n \end{cases}$$

b. Déduire de IV que, pour tout élément j de N, on a :

$$\sum_{n=0}^{+\infty} |p_{nj}|^2 \leqslant \left(\frac{H}{M_j}\right)^2$$

c. Soit (b_n) une suite complexe satisfaisant à : $\sum_{n=0}^{+\infty} |b_n|^2 < +\infty$.

Démontrer que la série $\sum_{0}^{+\infty} b_n P_n(z)$ est convergente dans C et que sa somme est une fonction entière de z (c'est-à-dire holomorphe dans le plan complexe C tout entier).

d. Soit (a_j) une suite complexe satisfaisant à : $\sum_{0}^{+\infty} \left| \frac{a_j}{M_j} \right| < +\infty$. Démontrer l'existence d'une suite unique (b_n) de complexes telle qu'on ait $\sum_{0}^{+\infty} |b_n|^2 < +\infty$ et que la fonction $f = \sum_{0}^{+\infty} b_n P_n$ vérifie pour tout $j = \int_{-\infty}^{+\infty} t^j f(t) (W(t))^{-1} dt = a_j$.

۷I

Dans cette question on note

- ρ un réel strictement positif et $\sigma = \frac{1}{\rho}$ son inverse;
- s^c l'ensemble des suites complexes (a_n) telles qu'il existe un réel c strictement positif (dépendant de la suite) pour lequel on a :

$$\sup_{n \ge 0} \left[c^{-n} n^{-\rho n} \mid a_n \mid \right] < + \infty$$

 \bullet S' l'ensemble des applications f indéfiniment dérivables de $\mathbf R$ dans $\mathbf C$ telles qu'il existe un réel c strictement positif (dépendant de f) pour lequel on a :

:
$$\sup_{\substack{n>0\\x\in\mathbb{R}}} \left[c^{-n} n^{-\rho n} \mid f^{(n)}(x)\mid\right] < +\infty$$

- W_A l'application de R dans $R: t \mapsto W_A(t) = \exp\left(\frac{|t|}{A}\right)^{\sigma}$, associée à un réel A strictement positif quelconque $\left(\sigma = \frac{1}{\rho}\right)$.
 - a. Soit g une application de R dans C satisfaisant à

$$\int_{-\infty}^{+\infty} |g(t)|^2 (\mathbf{W}_{\mathbf{A}}(t))^{-1} dt < + \infty$$

Le nombre x étant réel, on pose :

$$f(x) = \int_{-\infty}^{+\infty} e^{itx} g(t) \left(W_{\mathbf{A}}(t) \right)^{-1} dt .$$

ı

Démontrer qu'on définit ainsi une application f de \mathbf{R} dans \mathbf{C} , qui est élément de \mathbf{S}^{ρ} et qui, pour tout entier positif ou nul, satisfait à :

$$f^{(n)}(0) = i^n \int_{-\infty}^{+\infty} t^n g(t) \left(\mathbf{W}_{\mathbf{A}}(t) \right)^{-1} dt$$

 $\left(\text{ on rappelle que } \Gamma\left(u\right) = \int_{0}^{+\infty} e^{-t} \, t^{u-1} \, dt \quad \text{ et } \quad \left(\frac{u}{e}\right)^{u} \sqrt{\frac{2\pi}{u}} \quad \text{sont}$ équivalents lorsque u tend vers $+\infty$).

b. On suppose désormais $\rho > 1$. L'application W_A vérifie alors les hypothèses de IV et V.

Calculer

$$\mu_{\mathbf{A}}(r) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \frac{r \operatorname{Log} \mathbf{W}_{\mathbf{A}}(t)}{r^2 + t^2} dt \qquad \text{(utiliser II c.)}$$

Démontrer

$$M_{j}(A) = \sup_{r>0} \left[r^{j+\frac{1}{2}} \exp\left(-\mu_{A}(r)\right) \right] = \left[\gamma A \left(j + \frac{1}{2}\right)^{\rho} \right]^{j+\frac{1}{2}}$$

où γ est un nombre qu'on calculera.

c. Déduire de Vd. que, pour tout élément (a_n) de s^{ρ} , il existe un élément f de S^{ρ} tel que, pour tout n, on ait $: f^{(n)}(0) = a_n$.

On cherchera f de la forme : $x \longrightarrow \int_{-\pi}^{+\infty} e^{itz} g(t) (W_A(t))^{-1} dt$, en choisissant A et g convenablement).

RAPPORT SUR L'EPREUVE D'ANALYSE

Le texte donné propose l'étude et la résolution d'un cas particulier du problème des moments :

- construire, (a_n) étant une suite donnée de nombres réels ou complexes, une fonction f qui satisfait pour tout n à condition $\int_{-\infty}^{+\infty} t^n f(t) dt = a_n$ et vérifie des inégalités du type $\sup_{t \in \mathbb{R}} e^{\left|t\right|^{\sigma}} \left|f(t)\right| < +\infty \qquad \text{ou} \qquad \int_{-\infty}^{+\infty} e^{\left|t\right|^{\sigma}} \left|f(t)\right| dt < +\infty;$

ou bien de façon équivalente

- construire, (α_n) étant une suite donnée, une fonction g indéfiniment dérivable qui satisfait pour tout n à la condition $g^{(n)}(0) = \alpha_n$ et dont les dérivées successives vérifient des inégalités données du type

 $|g^{(n)}(t)| \le C A^n n!^s$ pour tout t,

C, A et s étant des constantes données.

Les paragraphes I, II, III et IV sont des préliminaires, qui introduisent et permettent d'utiliser la méthode du majorant harmonique.